F. Kenari, S. Molnár, Z. Pintér, Sobhan Bitaraf, P. Perjési
{"title":"(E)-2-苄基环酮:第十七部分。环查尔酮类似物(E)-2-[(4'-甲氧基苯基)亚甲基]-苯并亚龙-1-酮微粒体转化反应的LC-MS研究","authors":"F. Kenari, S. Molnár, Z. Pintér, Sobhan Bitaraf, P. Perjési","doi":"10.25082/jpbr.2022.02.004","DOIUrl":null,"url":null,"abstract":"Biotransformation of the antiproliferative (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-one (2c) was studied using rat liver microsomes. As a result of the CYP-catalyzed transformations, one monooxygenated (2c+O) and the demethylated (2c-CH2) metabolites were identified by HPLC-MS. (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-ol, the expected product of rat liver microsomal carbonyl reductase, was not found in the incubates. Microsomal GST-catalyzed reaction of the compound resulted in formation of diastereomeric GST-conjugates. Under the present HPLC conditions, the diastereomeric adducts were separated into two chromatographic peaks (2c-GSH-1 and 2c-GSH-2).","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"(E)-2-Benzylidenecyclanones: Part XVII. An LC-MS study of microsomal transformation reactions of (E)-2-[(4'-methoxyphenyl)methylene]-benzosuberon-1-one: A cyclic chalcone analog\",\"authors\":\"F. Kenari, S. Molnár, Z. Pintér, Sobhan Bitaraf, P. Perjési\",\"doi\":\"10.25082/jpbr.2022.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biotransformation of the antiproliferative (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-one (2c) was studied using rat liver microsomes. As a result of the CYP-catalyzed transformations, one monooxygenated (2c+O) and the demethylated (2c-CH2) metabolites were identified by HPLC-MS. (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-ol, the expected product of rat liver microsomal carbonyl reductase, was not found in the incubates. Microsomal GST-catalyzed reaction of the compound resulted in formation of diastereomeric GST-conjugates. Under the present HPLC conditions, the diastereomeric adducts were separated into two chromatographic peaks (2c-GSH-1 and 2c-GSH-2).\",\"PeriodicalId\":16703,\"journal\":{\"name\":\"Journal of Pharmaceutical and Biopharmaceutical Research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical and Biopharmaceutical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25082/jpbr.2022.02.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biopharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25082/jpbr.2022.02.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(E)-2-Benzylidenecyclanones: Part XVII. An LC-MS study of microsomal transformation reactions of (E)-2-[(4'-methoxyphenyl)methylene]-benzosuberon-1-one: A cyclic chalcone analog
Biotransformation of the antiproliferative (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-one (2c) was studied using rat liver microsomes. As a result of the CYP-catalyzed transformations, one monooxygenated (2c+O) and the demethylated (2c-CH2) metabolites were identified by HPLC-MS. (E)-2-[(4’-methoxyphenyl)methylene]-benzosuberon-1-ol, the expected product of rat liver microsomal carbonyl reductase, was not found in the incubates. Microsomal GST-catalyzed reaction of the compound resulted in formation of diastereomeric GST-conjugates. Under the present HPLC conditions, the diastereomeric adducts were separated into two chromatographic peaks (2c-GSH-1 and 2c-GSH-2).