{"title":"由电子散射得到的中子分布的均方半径和趋肤厚度","authors":"H. Kurasawa, T. Suda, Toshio Suzuki","doi":"10.1093/ptep/ptaa177","DOIUrl":null,"url":null,"abstract":"The second-order moment of the nuclear charge density($R^2_c$) is dominated by the mean square radius(msr) of the point proton distribution($R_p^2$), while the fourth-order moment($Q^4_c$) depends on the msr of the point neutron one($R_n^2$) also. Moreover, $R^2_n$ is strongly correlated to $R^2_c$ in nuclear models. According to these facts, the linear relationship between various moments in the nuclear mean field models are investigated with use of the least squares method for $^{40}$Ca, $^{48}$Ca and $^{208}$Pb. From the intersection points of the obtained straight lines with those of the experimental values for $R^2_c$ and $Q^4_c$ determined through electron scattering, the values of $R_p$ and $R_n$ are estimated. Since relativistic and non-relativistic models provide different lines, the obtained values of $R_n$ and the skin thickness($R_n-R_p$) differ from each other in the two frameworks.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The mean square radius of the neutron distribution and the skin thickness derived from electron scattering\",\"authors\":\"H. Kurasawa, T. Suda, Toshio Suzuki\",\"doi\":\"10.1093/ptep/ptaa177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second-order moment of the nuclear charge density($R^2_c$) is dominated by the mean square radius(msr) of the point proton distribution($R_p^2$), while the fourth-order moment($Q^4_c$) depends on the msr of the point neutron one($R_n^2$) also. Moreover, $R^2_n$ is strongly correlated to $R^2_c$ in nuclear models. According to these facts, the linear relationship between various moments in the nuclear mean field models are investigated with use of the least squares method for $^{40}$Ca, $^{48}$Ca and $^{208}$Pb. From the intersection points of the obtained straight lines with those of the experimental values for $R^2_c$ and $Q^4_c$ determined through electron scattering, the values of $R_p$ and $R_n$ are estimated. Since relativistic and non-relativistic models provide different lines, the obtained values of $R_n$ and the skin thickness($R_n-R_p$) differ from each other in the two frameworks.\",\"PeriodicalId\":8463,\"journal\":{\"name\":\"arXiv: Nuclear Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptaa177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ptep/ptaa177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mean square radius of the neutron distribution and the skin thickness derived from electron scattering
The second-order moment of the nuclear charge density($R^2_c$) is dominated by the mean square radius(msr) of the point proton distribution($R_p^2$), while the fourth-order moment($Q^4_c$) depends on the msr of the point neutron one($R_n^2$) also. Moreover, $R^2_n$ is strongly correlated to $R^2_c$ in nuclear models. According to these facts, the linear relationship between various moments in the nuclear mean field models are investigated with use of the least squares method for $^{40}$Ca, $^{48}$Ca and $^{208}$Pb. From the intersection points of the obtained straight lines with those of the experimental values for $R^2_c$ and $Q^4_c$ determined through electron scattering, the values of $R_p$ and $R_n$ are estimated. Since relativistic and non-relativistic models provide different lines, the obtained values of $R_n$ and the skin thickness($R_n-R_p$) differ from each other in the two frameworks.