{"title":"从控制的近距离图像中提取有纹理的垂直立面","authors":"S. Coorg, S. Teller","doi":"10.1109/CVPR.1999.787004","DOIUrl":null,"url":null,"abstract":"We are developing a system to extract geodetic, textured CAD models from thousands of initially uncontrolled, close-range ground and aerial images of urban scenes. Here we describe one component of the system, which operates after the imagery has been controlled or geo-referenced. This fully automatic component detects significant vertical facades in the scene, then extrudes them to meet an inferred, triangulated terrain and procedurally generated roof polygons. The algorithm then estimates for each surface a computer graphics texture, or diffuse reflectance map, from the many available observations of that surface. We present the results of the algorithm on a complex dataset: nearly 4,000 high-resolution digital images of a small (200 meter square) office park, acquired from close range under highly varying lighting conditions, amidst significant occlusion due both to multiple inter-occluding structures, and dense foliage. While the results are of less fidelity than that would be achievable by an interactive system, our algorithm is the first to be demonstrated on such a large, real-world dataset.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Extracting textured vertical facades from controlled close-range imagery\",\"authors\":\"S. Coorg, S. Teller\",\"doi\":\"10.1109/CVPR.1999.787004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are developing a system to extract geodetic, textured CAD models from thousands of initially uncontrolled, close-range ground and aerial images of urban scenes. Here we describe one component of the system, which operates after the imagery has been controlled or geo-referenced. This fully automatic component detects significant vertical facades in the scene, then extrudes them to meet an inferred, triangulated terrain and procedurally generated roof polygons. The algorithm then estimates for each surface a computer graphics texture, or diffuse reflectance map, from the many available observations of that surface. We present the results of the algorithm on a complex dataset: nearly 4,000 high-resolution digital images of a small (200 meter square) office park, acquired from close range under highly varying lighting conditions, amidst significant occlusion due both to multiple inter-occluding structures, and dense foliage. While the results are of less fidelity than that would be achievable by an interactive system, our algorithm is the first to be demonstrated on such a large, real-world dataset.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.787004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.787004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting textured vertical facades from controlled close-range imagery
We are developing a system to extract geodetic, textured CAD models from thousands of initially uncontrolled, close-range ground and aerial images of urban scenes. Here we describe one component of the system, which operates after the imagery has been controlled or geo-referenced. This fully automatic component detects significant vertical facades in the scene, then extrudes them to meet an inferred, triangulated terrain and procedurally generated roof polygons. The algorithm then estimates for each surface a computer graphics texture, or diffuse reflectance map, from the many available observations of that surface. We present the results of the algorithm on a complex dataset: nearly 4,000 high-resolution digital images of a small (200 meter square) office park, acquired from close range under highly varying lighting conditions, amidst significant occlusion due both to multiple inter-occluding structures, and dense foliage. While the results are of less fidelity than that would be achievable by an interactive system, our algorithm is the first to be demonstrated on such a large, real-world dataset.