{"title":"槲皮素改善对乙酰脒诱导的肝毒性和氧化应激","authors":"A. Ghazanfari, M. Soodi, A. Omidi","doi":"10.32598/PPJ.25.2.70","DOIUrl":null,"url":null,"abstract":"Introduction: Neonicotinoids are a new type of insecticides that have been introduced to the poison market during the last three decades. Acetamiprid (ACT) is a neonicotinoid and widely used for controlling pests. It targets the liver as a toxic agent and damages hepatic tissues through oxidative stress mechanisms. Quercetin is a flavonoid with potent antioxidant and hepatoprotective activity and protects tissues from oxidative damages. Thus, this study is aimed to assess the protective effect of quercetin on acetamiprid-induced hepatotoxicity. Methods: Thirty-six Wistar rats were classified into six groups including control, DMSO, ACT 20, ACT 40, quercetin, and ACT40+quercetin. All treatments were administered orally with gavage for 28 days. Alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzyme activity was measured in serum as biomarkers of hepatotoxicity. Lipid peroxidation, superoxide dismutase (SOD) enzyme activity and total thiol content were measured in hepatic tissues. Also, hepatic tissue sections were prepared and stained with hematoxylin and eosin and evaluated under optic microscope for any tissue injuries. Results: Findings showed that ACT, especially in high dose (40mg/kg), induced hepatic tissue destruction associated with increased hepatic enzyme activity, except ALP activity, in the serum. Besides, ACT increased the lipid peroxidation and decreased total thiol content and SOD activity, which indicates ACT-induced oxidative stress in hepatic tissues. Also, hepatic tissue injuries were observed in ACT-treated group. All these changes in liver were prevented by quercetin. Conclusion: Because of strong antioxidant properties, quercetin can cope effectively with ACT-induced hepatotoxicity.","PeriodicalId":20151,"journal":{"name":"Physiology and Pharmacology","volume":"13 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quercetin ameliorates acetamiprid-inducedhepatotoxicity and oxidative stress\",\"authors\":\"A. Ghazanfari, M. Soodi, A. Omidi\",\"doi\":\"10.32598/PPJ.25.2.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Neonicotinoids are a new type of insecticides that have been introduced to the poison market during the last three decades. Acetamiprid (ACT) is a neonicotinoid and widely used for controlling pests. It targets the liver as a toxic agent and damages hepatic tissues through oxidative stress mechanisms. Quercetin is a flavonoid with potent antioxidant and hepatoprotective activity and protects tissues from oxidative damages. Thus, this study is aimed to assess the protective effect of quercetin on acetamiprid-induced hepatotoxicity. Methods: Thirty-six Wistar rats were classified into six groups including control, DMSO, ACT 20, ACT 40, quercetin, and ACT40+quercetin. All treatments were administered orally with gavage for 28 days. Alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzyme activity was measured in serum as biomarkers of hepatotoxicity. Lipid peroxidation, superoxide dismutase (SOD) enzyme activity and total thiol content were measured in hepatic tissues. Also, hepatic tissue sections were prepared and stained with hematoxylin and eosin and evaluated under optic microscope for any tissue injuries. Results: Findings showed that ACT, especially in high dose (40mg/kg), induced hepatic tissue destruction associated with increased hepatic enzyme activity, except ALP activity, in the serum. Besides, ACT increased the lipid peroxidation and decreased total thiol content and SOD activity, which indicates ACT-induced oxidative stress in hepatic tissues. Also, hepatic tissue injuries were observed in ACT-treated group. All these changes in liver were prevented by quercetin. Conclusion: Because of strong antioxidant properties, quercetin can cope effectively with ACT-induced hepatotoxicity.\",\"PeriodicalId\":20151,\"journal\":{\"name\":\"Physiology and Pharmacology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/PPJ.25.2.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/PPJ.25.2.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Quercetin ameliorates acetamiprid-inducedhepatotoxicity and oxidative stress
Introduction: Neonicotinoids are a new type of insecticides that have been introduced to the poison market during the last three decades. Acetamiprid (ACT) is a neonicotinoid and widely used for controlling pests. It targets the liver as a toxic agent and damages hepatic tissues through oxidative stress mechanisms. Quercetin is a flavonoid with potent antioxidant and hepatoprotective activity and protects tissues from oxidative damages. Thus, this study is aimed to assess the protective effect of quercetin on acetamiprid-induced hepatotoxicity. Methods: Thirty-six Wistar rats were classified into six groups including control, DMSO, ACT 20, ACT 40, quercetin, and ACT40+quercetin. All treatments were administered orally with gavage for 28 days. Alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzyme activity was measured in serum as biomarkers of hepatotoxicity. Lipid peroxidation, superoxide dismutase (SOD) enzyme activity and total thiol content were measured in hepatic tissues. Also, hepatic tissue sections were prepared and stained with hematoxylin and eosin and evaluated under optic microscope for any tissue injuries. Results: Findings showed that ACT, especially in high dose (40mg/kg), induced hepatic tissue destruction associated with increased hepatic enzyme activity, except ALP activity, in the serum. Besides, ACT increased the lipid peroxidation and decreased total thiol content and SOD activity, which indicates ACT-induced oxidative stress in hepatic tissues. Also, hepatic tissue injuries were observed in ACT-treated group. All these changes in liver were prevented by quercetin. Conclusion: Because of strong antioxidant properties, quercetin can cope effectively with ACT-induced hepatotoxicity.
期刊介绍:
Physiology and Pharmacology is the official English publication of the Iranian Society of Physiology and Pharmacology. The journal publishes Review articles, Full-length original articles, Letter to editor and Short communications in physiology, pharmacology and related subjects. The aim of this journal is to provide a medium of scientific communication for investigators in the field of Physiology and Pharmacology. The editors will welcome original basic and applied research articles from Physiologists and Pharmacologists. Articles should be in English language. The papers submitted to this journal must not be Published or under consideration for publication elsewhere. Physiology and Pharmacology is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search or link to the full text of the articles in this journal without asking prior permission from the publisher or the author.