开放数据上的近似查询回答

Mengqi Zhang, Pranay Mundra, Chukwubuikem Chikweze, F. Nargesian, G. Weikum
{"title":"开放数据上的近似查询回答","authors":"Mengqi Zhang, Pranay Mundra, Chukwubuikem Chikweze, F. Nargesian, G. Weikum","doi":"10.1145/3597465.3605227","DOIUrl":null,"url":null,"abstract":"Open knowledge, including open data and publicly available knowledge bases, offers a rich opportunity for data scientists for analysis and query answering, but comes with big obstacles due to the diverse, noisy, and incomplete nature of its data eco-system. This paper proposes a vision for enabling approximate QUery answering over Open Knowledge (Quok), with a focus on supporting analytic tasks that involve identifying relevant data and computing aggregations. We define the problem, outline a system architecture, and discuss challenges and approaches to taming the uncertainty and incompleteness of open knowledge.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"46 Suppl 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Query Answering over Open Data\",\"authors\":\"Mengqi Zhang, Pranay Mundra, Chukwubuikem Chikweze, F. Nargesian, G. Weikum\",\"doi\":\"10.1145/3597465.3605227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open knowledge, including open data and publicly available knowledge bases, offers a rich opportunity for data scientists for analysis and query answering, but comes with big obstacles due to the diverse, noisy, and incomplete nature of its data eco-system. This paper proposes a vision for enabling approximate QUery answering over Open Knowledge (Quok), with a focus on supporting analytic tasks that involve identifying relevant data and computing aggregations. We define the problem, outline a system architecture, and discuss challenges and approaches to taming the uncertainty and incompleteness of open knowledge.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"46 Suppl 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597465.3605227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开放知识,包括开放数据和公开可用的知识库,为数据科学家提供了丰富的分析和查询回答机会,但由于其数据生态系统的多样性、嘈杂性和不完全性,也带来了很大的障碍。本文提出了在开放知识(Quok)上实现近似查询应答的愿景,重点是支持涉及识别相关数据和计算聚合的分析任务。我们定义了问题,概述了系统架构,并讨论了驯服开放知识的不确定性和不完整性的挑战和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Query Answering over Open Data
Open knowledge, including open data and publicly available knowledge bases, offers a rich opportunity for data scientists for analysis and query answering, but comes with big obstacles due to the diverse, noisy, and incomplete nature of its data eco-system. This paper proposes a vision for enabling approximate QUery answering over Open Knowledge (Quok), with a focus on supporting analytic tasks that involve identifying relevant data and computing aggregations. We define the problem, outline a system architecture, and discuss challenges and approaches to taming the uncertainty and incompleteness of open knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信