Alfred Gift Mwachugha, Prof. Jean Bosco Byiringiro, H. Ngetha, T. Carolus, K. Stahl
{"title":"桌面立体光刻技术制备普朗特探针的实验研究","authors":"Alfred Gift Mwachugha, Prof. Jean Bosco Byiringiro, H. Ngetha, T. Carolus, K. Stahl","doi":"10.24018/ejers.2020.5.10.2202","DOIUrl":null,"url":null,"abstract":"A Prandtl probe is one of the standard instruments used for flow characterization in wind tunnel facilities. The convectional fabrication method of this instrument requires skilled artisanship, precision drilling, lathing and soldering of its several parts. This reflects into high costs of production in turn making wind energy studies expensive. With the adoption of additive manufacturing, the tooling costs, skills required and design to manufacture constraints can be addressed. This research presents a Prandtl probe that was designed using NX™ software, fabricated by desktop stereolithography additive manufacturing platform and validated in a wind tunnel for velocity range of 0 m/s to 51 m/s. This research attested the option of fabricating relatively cheap functional Prandtl probe with desktop stereolithography technology which can be used for accurate determination of flow quality in wind tunnels experiments. This provides various learning and research institution in developing countries that have already invested in additive desktop manufacturing technology certainty and a cheaper option to fabricate wind research instruments for use at their laboratories. Moreover, fabrication and validation of a 5-hole Prandtl probe can also be examined.","PeriodicalId":12029,"journal":{"name":"European Journal of Engineering Research and Science","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of a Prandtl Probe Fabricated Using Desktop Stereolithography Technology\",\"authors\":\"Alfred Gift Mwachugha, Prof. Jean Bosco Byiringiro, H. Ngetha, T. Carolus, K. Stahl\",\"doi\":\"10.24018/ejers.2020.5.10.2202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Prandtl probe is one of the standard instruments used for flow characterization in wind tunnel facilities. The convectional fabrication method of this instrument requires skilled artisanship, precision drilling, lathing and soldering of its several parts. This reflects into high costs of production in turn making wind energy studies expensive. With the adoption of additive manufacturing, the tooling costs, skills required and design to manufacture constraints can be addressed. This research presents a Prandtl probe that was designed using NX™ software, fabricated by desktop stereolithography additive manufacturing platform and validated in a wind tunnel for velocity range of 0 m/s to 51 m/s. This research attested the option of fabricating relatively cheap functional Prandtl probe with desktop stereolithography technology which can be used for accurate determination of flow quality in wind tunnels experiments. This provides various learning and research institution in developing countries that have already invested in additive desktop manufacturing technology certainty and a cheaper option to fabricate wind research instruments for use at their laboratories. Moreover, fabrication and validation of a 5-hole Prandtl probe can also be examined.\",\"PeriodicalId\":12029,\"journal\":{\"name\":\"European Journal of Engineering Research and Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Engineering Research and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejers.2020.5.10.2202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejers.2020.5.10.2202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Investigation of a Prandtl Probe Fabricated Using Desktop Stereolithography Technology
A Prandtl probe is one of the standard instruments used for flow characterization in wind tunnel facilities. The convectional fabrication method of this instrument requires skilled artisanship, precision drilling, lathing and soldering of its several parts. This reflects into high costs of production in turn making wind energy studies expensive. With the adoption of additive manufacturing, the tooling costs, skills required and design to manufacture constraints can be addressed. This research presents a Prandtl probe that was designed using NX™ software, fabricated by desktop stereolithography additive manufacturing platform and validated in a wind tunnel for velocity range of 0 m/s to 51 m/s. This research attested the option of fabricating relatively cheap functional Prandtl probe with desktop stereolithography technology which can be used for accurate determination of flow quality in wind tunnels experiments. This provides various learning and research institution in developing countries that have already invested in additive desktop manufacturing technology certainty and a cheaper option to fabricate wind research instruments for use at their laboratories. Moreover, fabrication and validation of a 5-hole Prandtl probe can also be examined.