基于泽尼克矩的Devanagari手写数字识别

V. N. More, P. Rege
{"title":"基于泽尼克矩的Devanagari手写数字识别","authors":"V. N. More, P. Rege","doi":"10.1109/TENCON.2008.4766863","DOIUrl":null,"url":null,"abstract":"The preprocessing of numerals includes bounding them for translation invariance followed by normalization for scale invariance. We achieve translation and scale invariance using simple geometric moments. Higher order Zernike moments are used as shape descriptors. Due to rotation invariance and orthogonal properties of Zernike moments, they are found to perform better in terms of computational complexity and classification achieved. The algorithm has been tested on different handwritten samples taken from different people. In this paper, an attempt is made to develop off-line recognition system for isolated Devanagari numerals.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Devanagari handwritten numeral identification based on Zernike moments\",\"authors\":\"V. N. More, P. Rege\",\"doi\":\"10.1109/TENCON.2008.4766863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preprocessing of numerals includes bounding them for translation invariance followed by normalization for scale invariance. We achieve translation and scale invariance using simple geometric moments. Higher order Zernike moments are used as shape descriptors. Due to rotation invariance and orthogonal properties of Zernike moments, they are found to perform better in terms of computational complexity and classification achieved. The algorithm has been tested on different handwritten samples taken from different people. In this paper, an attempt is made to develop off-line recognition system for isolated Devanagari numerals.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

数字的预处理包括为平移不变性对数字进行边界处理,然后为尺度不变性进行归一化处理。我们使用简单的几何矩实现平移和尺度不变性。高阶泽尼克矩被用作形状描述符。由于泽尼克矩的旋转不变性和正交特性,它们在计算复杂度和实现分类方面表现得更好。该算法已经在不同人的不同手写样本上进行了测试。本文尝试开发一种分离德文纳格里数字的离线识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Devanagari handwritten numeral identification based on Zernike moments
The preprocessing of numerals includes bounding them for translation invariance followed by normalization for scale invariance. We achieve translation and scale invariance using simple geometric moments. Higher order Zernike moments are used as shape descriptors. Due to rotation invariance and orthogonal properties of Zernike moments, they are found to perform better in terms of computational complexity and classification achieved. The algorithm has been tested on different handwritten samples taken from different people. In this paper, an attempt is made to develop off-line recognition system for isolated Devanagari numerals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信