薛定谔型算子相关Riesz变换的高阶换易子的有界性

IF 0.4 Q4 MATHEMATICS
global sci
{"title":"薛定谔型算子相关Riesz变换的高阶换易子的有界性","authors":"global sci","doi":"10.4208/ata.oa-2017-0055","DOIUrl":null,"url":null,"abstract":"Let L2 = (−∆)2 + V2 be the Schrödinger type operator, where V 6= 0 is a nonnegative potential and belongs to the reverse Hölder class RHq1 for q1 > n/2, n ≥ 5. The higher Riesz transform associated with L2 is denoted by R = ∇2L − 2 2 and its dual is denoted by R∗ = L 1 2 2 ∇2. In this paper, we consider the m-order commutators [bm,R] and [bm,R∗], and establish the (Lp, Lq)-boundedness of these commutators when b belongs to the new Campanato space Λβ(ρ) and 1/q = 1/p−mβ/n.","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"30 1","pages":"99-110"},"PeriodicalIF":0.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of High Order Commutators of Riesz Transforms Associated with Schrodinger Type Operators\",\"authors\":\"global sci\",\"doi\":\"10.4208/ata.oa-2017-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L2 = (−∆)2 + V2 be the Schrödinger type operator, where V 6= 0 is a nonnegative potential and belongs to the reverse Hölder class RHq1 for q1 > n/2, n ≥ 5. The higher Riesz transform associated with L2 is denoted by R = ∇2L − 2 2 and its dual is denoted by R∗ = L 1 2 2 ∇2. In this paper, we consider the m-order commutators [bm,R] and [bm,R∗], and establish the (Lp, Lq)-boundedness of these commutators when b belongs to the new Campanato space Λβ(ρ) and 1/q = 1/p−mβ/n.\",\"PeriodicalId\":29763,\"journal\":{\"name\":\"Analysis in Theory and Applications\",\"volume\":\"30 1\",\"pages\":\"99-110\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis in Theory and Applications\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.4208/ata.oa-2017-0055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.oa-2017-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设L2 =(−∆)2 + V2为Schrödinger型算子,其中v6 = 0为非负势,当q1 > n/2, n≥5时,属于反向Hölder类RHq1。与L2相关的高Riesz变换记为R =∇2L−22,其对偶记为R∗= L 1 2 2∇2。本文考虑m阶对向子[bm,R]和[bm,R *],并在b属于新Campanato空间Λβ(ρ)且1/q = 1/p−mβ/n时,建立了这些对向子的(Lp, Lq)有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of High Order Commutators of Riesz Transforms Associated with Schrodinger Type Operators
Let L2 = (−∆)2 + V2 be the Schrödinger type operator, where V 6= 0 is a nonnegative potential and belongs to the reverse Hölder class RHq1 for q1 > n/2, n ≥ 5. The higher Riesz transform associated with L2 is denoted by R = ∇2L − 2 2 and its dual is denoted by R∗ = L 1 2 2 ∇2. In this paper, we consider the m-order commutators [bm,R] and [bm,R∗], and establish the (Lp, Lq)-boundedness of these commutators when b belongs to the new Campanato space Λβ(ρ) and 1/q = 1/p−mβ/n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信