{"title":"植物中叶酸化合物的生物合成。五、豌豆幼苗二氢蝶呤合成酶的反应机理。","authors":"O. Okinaka, K. Iwai","doi":"10.5925/JNSV1954.14.160","DOIUrl":null,"url":null,"abstract":"Cell-free extracts of pea seedlings contain the enzyme system which catalyzes the formation of folate compounds from 2-amino-4-hydroxy-6-substituted pteridines and p-aminobenzoic acid or p-aminobenzoylglutamic acid. Active pteridines were 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine and its pyrophosphate ester, i.e., 2-amino-4-hydroxy-6-pyrophosphorylmethyldihydropteridine, and a considerable amount of folate compound was formed enzymatically from the latter compound in the presence of Mg2+ as a cofactor, whereas the less amount was formed from the former in the presence of both ATP and Mg2+. The products were characterized, by a bioautographic technique, as dihydropteroic acid and dihydrofolic acid from p-aminobenzoic acid and p-aminobenzoylglutamic acid, respectively, in the presence of pyrophosphorylmethyldihydropteridine. In the enzymatic reaction, p-aminobenzoic acid was more active as substrate than p-aminobenzoylglutamic acid. When p-aminobenzoic acid and L-glutamic acid were used in place of p-aminobenzoic acid in the enzyme system, dihydropteroic acid and dihydrofolic acid were formed in the presence of the pteridine, ATP and Mg2+. From these results presented, the following pathway for the biosynthesis of folate compounds in plants was proposed:","PeriodicalId":22950,"journal":{"name":"The Journal of vitaminology","volume":"132 1","pages":"210-4"},"PeriodicalIF":0.0000,"publicationDate":"1970-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"The biosynthesis of folic acid compounds in plants. V. Reaction mechanism of the dihydropteroate-synthesizing enzyme from pea seedlings.\",\"authors\":\"O. Okinaka, K. Iwai\",\"doi\":\"10.5925/JNSV1954.14.160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free extracts of pea seedlings contain the enzyme system which catalyzes the formation of folate compounds from 2-amino-4-hydroxy-6-substituted pteridines and p-aminobenzoic acid or p-aminobenzoylglutamic acid. Active pteridines were 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine and its pyrophosphate ester, i.e., 2-amino-4-hydroxy-6-pyrophosphorylmethyldihydropteridine, and a considerable amount of folate compound was formed enzymatically from the latter compound in the presence of Mg2+ as a cofactor, whereas the less amount was formed from the former in the presence of both ATP and Mg2+. The products were characterized, by a bioautographic technique, as dihydropteroic acid and dihydrofolic acid from p-aminobenzoic acid and p-aminobenzoylglutamic acid, respectively, in the presence of pyrophosphorylmethyldihydropteridine. In the enzymatic reaction, p-aminobenzoic acid was more active as substrate than p-aminobenzoylglutamic acid. When p-aminobenzoic acid and L-glutamic acid were used in place of p-aminobenzoic acid in the enzyme system, dihydropteroic acid and dihydrofolic acid were formed in the presence of the pteridine, ATP and Mg2+. From these results presented, the following pathway for the biosynthesis of folate compounds in plants was proposed:\",\"PeriodicalId\":22950,\"journal\":{\"name\":\"The Journal of vitaminology\",\"volume\":\"132 1\",\"pages\":\"210-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of vitaminology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5925/JNSV1954.14.160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of vitaminology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5925/JNSV1954.14.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The biosynthesis of folic acid compounds in plants. V. Reaction mechanism of the dihydropteroate-synthesizing enzyme from pea seedlings.
Cell-free extracts of pea seedlings contain the enzyme system which catalyzes the formation of folate compounds from 2-amino-4-hydroxy-6-substituted pteridines and p-aminobenzoic acid or p-aminobenzoylglutamic acid. Active pteridines were 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine and its pyrophosphate ester, i.e., 2-amino-4-hydroxy-6-pyrophosphorylmethyldihydropteridine, and a considerable amount of folate compound was formed enzymatically from the latter compound in the presence of Mg2+ as a cofactor, whereas the less amount was formed from the former in the presence of both ATP and Mg2+. The products were characterized, by a bioautographic technique, as dihydropteroic acid and dihydrofolic acid from p-aminobenzoic acid and p-aminobenzoylglutamic acid, respectively, in the presence of pyrophosphorylmethyldihydropteridine. In the enzymatic reaction, p-aminobenzoic acid was more active as substrate than p-aminobenzoylglutamic acid. When p-aminobenzoic acid and L-glutamic acid were used in place of p-aminobenzoic acid in the enzyme system, dihydropteroic acid and dihydrofolic acid were formed in the presence of the pteridine, ATP and Mg2+. From these results presented, the following pathway for the biosynthesis of folate compounds in plants was proposed: