{"title":"一个旋转、缩放和平移不变模式分类系统","authors":"Cem Yüceer, Kemal Oflazer","doi":"10.1109/ICPR.1992.201808","DOIUrl":null,"url":null,"abstract":"Presents a hybrid pattern classification system which can classify patterns in a rotation, scaling, and translation invariant manner. The system is based on preprocessing the input image to map it into a rotation, scaling, and translation invariant canonical form, which is then classified by a multilayer feedforward neural net. Results from a number of classification problems are also presented in the paper.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"5 1","pages":"422-425"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"A rotation, scaling and translation invariant pattern classification system\",\"authors\":\"Cem Yüceer, Kemal Oflazer\",\"doi\":\"10.1109/ICPR.1992.201808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a hybrid pattern classification system which can classify patterns in a rotation, scaling, and translation invariant manner. The system is based on preprocessing the input image to map it into a rotation, scaling, and translation invariant canonical form, which is then classified by a multilayer feedforward neural net. Results from a number of classification problems are also presented in the paper.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"5 1\",\"pages\":\"422-425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
A rotation, scaling and translation invariant pattern classification system
Presents a hybrid pattern classification system which can classify patterns in a rotation, scaling, and translation invariant manner. The system is based on preprocessing the input image to map it into a rotation, scaling, and translation invariant canonical form, which is then classified by a multilayer feedforward neural net. Results from a number of classification problems are also presented in the paper.<>