A. Wijaya, P. M. S. B. Siregar, A. Badri, N. Palapa, Amri Amri, N. Ahmad, A. Lesbani
{"title":"金属氧化物(Cu)作为甲基橙和甲基红染料吸附剂的改性层状双氢氧化物Mg/M3+ (M3+ = Al和Cr","authors":"A. Wijaya, P. M. S. B. Siregar, A. Badri, N. Palapa, Amri Amri, N. Ahmad, A. Lesbani","doi":"10.3311/ppch.21608","DOIUrl":null,"url":null,"abstract":"Mg/Cr-layered double hydroxide (Mg/Cr-LDH) and Mg/Al-layered double hydroxide (Mg/Al-LDH) intercalated metal oxide (Mg/Cr-Cu and Mg/Al-Cu) were synthesized by the co-precipitation method which is indicated by the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Brunauer Emmett Teller (BET) analysis. Mg/Cr-LDH intercalated metal oxide increased its surface area from 21.5 to 38.9 m2/g, while the surface area of Mg/Al-LDH from 23.2 to 30.5 m2/g. The adsorption capacity of Mg/Cr-Cu is 64.156 mg/g for methyl orange (MO) and 78.740 mg/g for methyl red (MR), and the adsorption capacity of Mg/Al-Cu is 97.087 mg/g for MO and 108.696 mg/g for MR. Equilibrium time on the adsorption process occurred at 90 minutes with adsorption kinetics followed by pseudo-second-order (PSO). The adsorption isotherm followed the Langmuir isotherm equation. Data of thermodynamic parameters indicate that the adsorption process in this study occurs spontaneously and endothermically. The regeneration results show that Mg/Cr-Cu and Mg/Al-Cu can be used for the 5 cycles regeneration process of MO and MR adsorption process. Interactions that occur between adsorbents and adsorbate include physical interactions, interactions with the involvement of hydrogen bonds, and electrostatic interactions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Layered Double Hydroxide Mg/M3+ (M3+ = Al and Cr) Using Metal Oxide (Cu) as Adsorbent for Methyl Orange and Methyl Red Dyes\",\"authors\":\"A. Wijaya, P. M. S. B. Siregar, A. Badri, N. Palapa, Amri Amri, N. Ahmad, A. Lesbani\",\"doi\":\"10.3311/ppch.21608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mg/Cr-layered double hydroxide (Mg/Cr-LDH) and Mg/Al-layered double hydroxide (Mg/Al-LDH) intercalated metal oxide (Mg/Cr-Cu and Mg/Al-Cu) were synthesized by the co-precipitation method which is indicated by the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Brunauer Emmett Teller (BET) analysis. Mg/Cr-LDH intercalated metal oxide increased its surface area from 21.5 to 38.9 m2/g, while the surface area of Mg/Al-LDH from 23.2 to 30.5 m2/g. The adsorption capacity of Mg/Cr-Cu is 64.156 mg/g for methyl orange (MO) and 78.740 mg/g for methyl red (MR), and the adsorption capacity of Mg/Al-Cu is 97.087 mg/g for MO and 108.696 mg/g for MR. Equilibrium time on the adsorption process occurred at 90 minutes with adsorption kinetics followed by pseudo-second-order (PSO). The adsorption isotherm followed the Langmuir isotherm equation. Data of thermodynamic parameters indicate that the adsorption process in this study occurs spontaneously and endothermically. The regeneration results show that Mg/Cr-Cu and Mg/Al-Cu can be used for the 5 cycles regeneration process of MO and MR adsorption process. Interactions that occur between adsorbents and adsorbate include physical interactions, interactions with the involvement of hydrogen bonds, and electrostatic interactions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.21608\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.21608","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modified Layered Double Hydroxide Mg/M3+ (M3+ = Al and Cr) Using Metal Oxide (Cu) as Adsorbent for Methyl Orange and Methyl Red Dyes
Mg/Cr-layered double hydroxide (Mg/Cr-LDH) and Mg/Al-layered double hydroxide (Mg/Al-LDH) intercalated metal oxide (Mg/Cr-Cu and Mg/Al-Cu) were synthesized by the co-precipitation method which is indicated by the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Brunauer Emmett Teller (BET) analysis. Mg/Cr-LDH intercalated metal oxide increased its surface area from 21.5 to 38.9 m2/g, while the surface area of Mg/Al-LDH from 23.2 to 30.5 m2/g. The adsorption capacity of Mg/Cr-Cu is 64.156 mg/g for methyl orange (MO) and 78.740 mg/g for methyl red (MR), and the adsorption capacity of Mg/Al-Cu is 97.087 mg/g for MO and 108.696 mg/g for MR. Equilibrium time on the adsorption process occurred at 90 minutes with adsorption kinetics followed by pseudo-second-order (PSO). The adsorption isotherm followed the Langmuir isotherm equation. Data of thermodynamic parameters indicate that the adsorption process in this study occurs spontaneously and endothermically. The regeneration results show that Mg/Cr-Cu and Mg/Al-Cu can be used for the 5 cycles regeneration process of MO and MR adsorption process. Interactions that occur between adsorbents and adsorbate include physical interactions, interactions with the involvement of hydrogen bonds, and electrostatic interactions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.