{"title":"破碎机对圆形、方形和菱形圆筒的冲击力贡献","authors":"Xin Wang, A. Dev, L. Tao, D. Chia, Yali Zhang","doi":"10.1115/omae2019-95126","DOIUrl":null,"url":null,"abstract":"\n Plunging breakers, unlike non-breaking waves, impose additional slamming load on the offshore structures. This additional slamming load is considered an extreme event and is one of the most devastating forces that an offshore structure could encounter during its operational lifecycle.\n Whilst there are design guidelines for offshore structures pertaining to breaking waves, however it is limited to only cylindrical shape. The amount of slamming load contribution by the plunging jet is also dependent on the cross section geometries of the offshore structures. Different geometries would give rise to different air entrainment phenomenon during wave breaking and therefore affecting the slamming load contributions.\n In this research, JONSWAP spectrum was used to create plunging breakers via the focusing method at Newcastle University’s Wind Wave and Current tank. The crux of this research is to investigate the wave-breaking impact load on cylindrical structures with different cross section geometries commonly used in the offshore industry.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Slamming Force Contribution due to Plunging Breakers on Circular, Square and Diamond Cylinders\",\"authors\":\"Xin Wang, A. Dev, L. Tao, D. Chia, Yali Zhang\",\"doi\":\"10.1115/omae2019-95126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Plunging breakers, unlike non-breaking waves, impose additional slamming load on the offshore structures. This additional slamming load is considered an extreme event and is one of the most devastating forces that an offshore structure could encounter during its operational lifecycle.\\n Whilst there are design guidelines for offshore structures pertaining to breaking waves, however it is limited to only cylindrical shape. The amount of slamming load contribution by the plunging jet is also dependent on the cross section geometries of the offshore structures. Different geometries would give rise to different air entrainment phenomenon during wave breaking and therefore affecting the slamming load contributions.\\n In this research, JONSWAP spectrum was used to create plunging breakers via the focusing method at Newcastle University’s Wind Wave and Current tank. The crux of this research is to investigate the wave-breaking impact load on cylindrical structures with different cross section geometries commonly used in the offshore industry.\",\"PeriodicalId\":23567,\"journal\":{\"name\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slamming Force Contribution due to Plunging Breakers on Circular, Square and Diamond Cylinders
Plunging breakers, unlike non-breaking waves, impose additional slamming load on the offshore structures. This additional slamming load is considered an extreme event and is one of the most devastating forces that an offshore structure could encounter during its operational lifecycle.
Whilst there are design guidelines for offshore structures pertaining to breaking waves, however it is limited to only cylindrical shape. The amount of slamming load contribution by the plunging jet is also dependent on the cross section geometries of the offshore structures. Different geometries would give rise to different air entrainment phenomenon during wave breaking and therefore affecting the slamming load contributions.
In this research, JONSWAP spectrum was used to create plunging breakers via the focusing method at Newcastle University’s Wind Wave and Current tank. The crux of this research is to investigate the wave-breaking impact load on cylindrical structures with different cross section geometries commonly used in the offshore industry.