用于室内辅助导航的室内标识检测系统

Mouna Afif, R. Ayachi, Yahia Said, M. Atri
{"title":"用于室内辅助导航的室内标识检测系统","authors":"Mouna Afif, R. Ayachi, Yahia Said, M. Atri","doi":"10.1109/SSD52085.2021.9429495","DOIUrl":null,"url":null,"abstract":"Indoor signage plays an important role in finding specific destinations and way-finding especially for blind and visually impaired people (VIP). In this paper, we developed a new indoor signage classifier using deep convolutional neural Network (DCNN). Computer vision-based systems using cameras-based present a potential intermediate to assist blind and VIP persons on accessing unfamiliar buildings. Experiments were performed on a new dataset taken in an indoor building in France. The proposed dataset present 800 natural images divided into 4 indoor signs. Results achieved show that our proposed approach presents very encouraging results coming to 99.8% as recognition precision rate.","PeriodicalId":6799,"journal":{"name":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"11 1","pages":"1383-1387"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor sign Detection System for Indoor Assistance Navigation\",\"authors\":\"Mouna Afif, R. Ayachi, Yahia Said, M. Atri\",\"doi\":\"10.1109/SSD52085.2021.9429495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor signage plays an important role in finding specific destinations and way-finding especially for blind and visually impaired people (VIP). In this paper, we developed a new indoor signage classifier using deep convolutional neural Network (DCNN). Computer vision-based systems using cameras-based present a potential intermediate to assist blind and VIP persons on accessing unfamiliar buildings. Experiments were performed on a new dataset taken in an indoor building in France. The proposed dataset present 800 natural images divided into 4 indoor signs. Results achieved show that our proposed approach presents very encouraging results coming to 99.8% as recognition precision rate.\",\"PeriodicalId\":6799,\"journal\":{\"name\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"11 1\",\"pages\":\"1383-1387\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD52085.2021.9429495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD52085.2021.9429495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

室内标识在寻找特定目的地和寻路方面发挥着重要作用,特别是对于盲人和视障人士(VIP)。本文提出了一种基于深度卷积神经网络(DCNN)的室内标识分类器。基于摄像机的计算机视觉系统提供了一种潜在的中介,可以帮助盲人和贵宾进入不熟悉的建筑物。实验是在法国一座室内建筑中采集的新数据集上进行的。该数据集包含800幅自然图像,分为4个室内标志。实验结果表明,该方法取得了令人鼓舞的结果,识别准确率达到99.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor sign Detection System for Indoor Assistance Navigation
Indoor signage plays an important role in finding specific destinations and way-finding especially for blind and visually impaired people (VIP). In this paper, we developed a new indoor signage classifier using deep convolutional neural Network (DCNN). Computer vision-based systems using cameras-based present a potential intermediate to assist blind and VIP persons on accessing unfamiliar buildings. Experiments were performed on a new dataset taken in an indoor building in France. The proposed dataset present 800 natural images divided into 4 indoor signs. Results achieved show that our proposed approach presents very encouraging results coming to 99.8% as recognition precision rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信