基于拉格朗日感知的时变时滞记忆电阻不确定神经网络的全局指数稳定性

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
R. Suresh, M. Ali, Sumit Saroha
{"title":"基于拉格朗日感知的时变时滞记忆电阻不确定神经网络的全局指数稳定性","authors":"R. Suresh, M. Ali, Sumit Saroha","doi":"10.1080/0952813X.2021.1960632","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper addresses the global exponential stability in Lagrange sense for memristor-based neural networks (MNNs) with time-varying delays. This paper attempts to derive the delay-dependent Lagrange stability conditions in terms of linear matrix inequalities by designing a suitable Lyapunov-Krasovskii functionaland used Wirtinger inequality, Jensen-based inequality for estimating the integral inequalities. The conditions which are derived confirms the globally exponential stability in Lagrange sense for the proposed MNNs and, the detailed estimation for global exponential attractive set is also given. To show the effectiveness and applicability of the proposed criteria, two numerical examples are also provided in this paper.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"8 1","pages":"275 - 288"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global exponential stability of memristor based uncertain neural networks with time-varying delays via Lagrange sense\",\"authors\":\"R. Suresh, M. Ali, Sumit Saroha\",\"doi\":\"10.1080/0952813X.2021.1960632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper addresses the global exponential stability in Lagrange sense for memristor-based neural networks (MNNs) with time-varying delays. This paper attempts to derive the delay-dependent Lagrange stability conditions in terms of linear matrix inequalities by designing a suitable Lyapunov-Krasovskii functionaland used Wirtinger inequality, Jensen-based inequality for estimating the integral inequalities. The conditions which are derived confirms the globally exponential stability in Lagrange sense for the proposed MNNs and, the detailed estimation for global exponential attractive set is also given. To show the effectiveness and applicability of the proposed criteria, two numerical examples are also provided in this paper.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"8 1\",\"pages\":\"275 - 288\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1960632\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1960632","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有时变延迟的基于记忆电阻的神经网络(MNNs)在拉格朗日意义下的全局指数稳定性。本文通过设计一个合适的Lyapunov-Krasovskii泛函,并利用Wirtinger不等式、jensen不等式来估计线性矩阵不等式,尝试推导线性矩阵不等式中时滞相关的Lagrange稳定性条件。所得到的条件证实了所提mnn在拉格朗日意义上的全局指数稳定性,并给出了全局指数吸引集的详细估计。为了说明所提准则的有效性和适用性,文中还给出了两个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global exponential stability of memristor based uncertain neural networks with time-varying delays via Lagrange sense
ABSTRACT This paper addresses the global exponential stability in Lagrange sense for memristor-based neural networks (MNNs) with time-varying delays. This paper attempts to derive the delay-dependent Lagrange stability conditions in terms of linear matrix inequalities by designing a suitable Lyapunov-Krasovskii functionaland used Wirtinger inequality, Jensen-based inequality for estimating the integral inequalities. The conditions which are derived confirms the globally exponential stability in Lagrange sense for the proposed MNNs and, the detailed estimation for global exponential attractive set is also given. To show the effectiveness and applicability of the proposed criteria, two numerical examples are also provided in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信