统计空间的轨迹纵向数据分析

Rudrasis Chakraborty, Monami Banerjee, B. Vemuri
{"title":"统计空间的轨迹纵向数据分析","authors":"Rudrasis Chakraborty, Monami Banerjee, B. Vemuri","doi":"10.1109/ISBI.2017.7950684","DOIUrl":null,"url":null,"abstract":"Statistical analysis of longitudinal data is a significant problem in Biomedical imaging applications. In the recent past, several researchers have developed mathematically rigorous methods based on differential geometry and statistics to tackle the problem of statistical analysis of longitudinal neuroimaging data. In this paper, we present a novel formulation of the longitudinal data analysis problem by identifying the structural changes over time (describing the trajectory of change) to a product Riemannian manifold endowed with a Riemannian metric and a probability measure. We present theoretical results showing that the maximum likelihood estimate of the mean and median of a Gaussian and Laplace distribution respectively on the product manifold yield the Fréchet mean and median respectively. We then present efficient recursive estimators for these intrinsic parameters and use them in conjunction with a nearest neighbor (NN) classifier to classify MR brain scans (acquired from the publicly available OASIS database) of patients with and without dementia.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"12 1","pages":"999-1002"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Statistics on the space of trajectories for longitudinal data analysis\",\"authors\":\"Rudrasis Chakraborty, Monami Banerjee, B. Vemuri\",\"doi\":\"10.1109/ISBI.2017.7950684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical analysis of longitudinal data is a significant problem in Biomedical imaging applications. In the recent past, several researchers have developed mathematically rigorous methods based on differential geometry and statistics to tackle the problem of statistical analysis of longitudinal neuroimaging data. In this paper, we present a novel formulation of the longitudinal data analysis problem by identifying the structural changes over time (describing the trajectory of change) to a product Riemannian manifold endowed with a Riemannian metric and a probability measure. We present theoretical results showing that the maximum likelihood estimate of the mean and median of a Gaussian and Laplace distribution respectively on the product manifold yield the Fréchet mean and median respectively. We then present efficient recursive estimators for these intrinsic parameters and use them in conjunction with a nearest neighbor (NN) classifier to classify MR brain scans (acquired from the publicly available OASIS database) of patients with and without dementia.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"12 1\",\"pages\":\"999-1002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

纵向数据的统计分析是生物医学成像应用中的一个重要问题。在最近的过去,一些研究人员开发了基于微分几何和统计学的数学上严格的方法来解决纵向神经成像数据的统计分析问题。在本文中,我们提出了纵向数据分析问题的一个新公式,通过识别随时间的结构变化(描述变化的轨迹)的黎曼流形赋予黎曼度量和概率测度。我们给出的理论结果表明,高斯分布和拉普拉斯分布在乘积流形上的均值和中位数的极大似然估计分别产生了fr均值和中位数。然后,我们提出了这些内在参数的有效递归估计器,并将它们与最近邻(NN)分类器结合使用,对患有和不患有痴呆症的患者的MR脑部扫描(从公开可用的OASIS数据库获取)进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistics on the space of trajectories for longitudinal data analysis
Statistical analysis of longitudinal data is a significant problem in Biomedical imaging applications. In the recent past, several researchers have developed mathematically rigorous methods based on differential geometry and statistics to tackle the problem of statistical analysis of longitudinal neuroimaging data. In this paper, we present a novel formulation of the longitudinal data analysis problem by identifying the structural changes over time (describing the trajectory of change) to a product Riemannian manifold endowed with a Riemannian metric and a probability measure. We present theoretical results showing that the maximum likelihood estimate of the mean and median of a Gaussian and Laplace distribution respectively on the product manifold yield the Fréchet mean and median respectively. We then present efficient recursive estimators for these intrinsic parameters and use them in conjunction with a nearest neighbor (NN) classifier to classify MR brain scans (acquired from the publicly available OASIS database) of patients with and without dementia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信