具有状态延迟和缺失测量的数据融合算法

N. Shivashankarappa, Raol J. R
{"title":"具有状态延迟和缺失测量的数据融合算法","authors":"N. Shivashankarappa, Raol J. R","doi":"10.9790/9622-0706066268","DOIUrl":null,"url":null,"abstract":"In wireless sensor networks and other engineering systems, there are situations wherein some delays occur in data transmission and some measurements might be randomly missing. This would cause inaccuracies in Kalman filter or its equivalent algorithms, when used for target tracking. In this paper four alternative algorithms are studied and the modifications to include the state delay and randomly missing measurements are provided. Especially:i) the gain fusion, H-infinity a posteriori, H-infinity risk sensitive filter, and H-infinity global filtering algorithms are modified, and evaluated for sensor data fusion scenario using numerical simulations carried out in MATLAB; and ii) a nonlinear observer based on the continuous time data fusion filter is presented, and asymptotic convergence result is derived using Lyapunov energy functional; these two aspects are the novel contribution of this paper.","PeriodicalId":13972,"journal":{"name":"International Journal of Engineering Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Fusion Algorithms with State Delay and Missing Measurements\",\"authors\":\"N. Shivashankarappa, Raol J. R\",\"doi\":\"10.9790/9622-0706066268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless sensor networks and other engineering systems, there are situations wherein some delays occur in data transmission and some measurements might be randomly missing. This would cause inaccuracies in Kalman filter or its equivalent algorithms, when used for target tracking. In this paper four alternative algorithms are studied and the modifications to include the state delay and randomly missing measurements are provided. Especially:i) the gain fusion, H-infinity a posteriori, H-infinity risk sensitive filter, and H-infinity global filtering algorithms are modified, and evaluated for sensor data fusion scenario using numerical simulations carried out in MATLAB; and ii) a nonlinear observer based on the continuous time data fusion filter is presented, and asymptotic convergence result is derived using Lyapunov energy functional; these two aspects are the novel contribution of this paper.\",\"PeriodicalId\":13972,\"journal\":{\"name\":\"International Journal of Engineering Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9790/9622-0706066268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/9622-0706066268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在无线传感器网络和其他工程系统中,存在数据传输出现延迟和一些测量可能随机丢失的情况。当用于目标跟踪时,这将导致卡尔曼滤波或其等效算法的不准确性。本文研究了四种备选算法,并给出了包括状态延迟和随机缺失测量在内的改进算法。特别是:1)对增益融合、h -∞后验、h -∞风险敏感滤波和h -∞全局滤波算法进行了改进,并在MATLAB中进行了数值模拟,对传感器数据融合场景进行了评估;ii)提出了一种基于连续时间数据融合滤波器的非线性观测器,并利用Lyapunov能量泛函导出了渐近收敛结果;这两个方面是本文的新颖之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Fusion Algorithms with State Delay and Missing Measurements
In wireless sensor networks and other engineering systems, there are situations wherein some delays occur in data transmission and some measurements might be randomly missing. This would cause inaccuracies in Kalman filter or its equivalent algorithms, when used for target tracking. In this paper four alternative algorithms are studied and the modifications to include the state delay and randomly missing measurements are provided. Especially:i) the gain fusion, H-infinity a posteriori, H-infinity risk sensitive filter, and H-infinity global filtering algorithms are modified, and evaluated for sensor data fusion scenario using numerical simulations carried out in MATLAB; and ii) a nonlinear observer based on the continuous time data fusion filter is presented, and asymptotic convergence result is derived using Lyapunov energy functional; these two aspects are the novel contribution of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信