梯度张量范畴的等变Morita理论

Pub Date : 2021-06-14 DOI:10.36045/j.bbms.210720
César Galindo, David Jaklitsch, C. Schweigert
{"title":"梯度张量范畴的等变Morita理论","authors":"César Galindo, David Jaklitsch, C. Schweigert","doi":"10.36045/j.bbms.210720","DOIUrl":null,"url":null,"abstract":"We extend categorical Morita equivalence to finite tensor categories graded by a finite group $G$. We show that two such categories are graded Morita equivalent if and only if their equivariant Drinfeld centers are equivalent as braided $G$-crossed tensor categories.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Equivariant Morita theory for graded tensor categories\",\"authors\":\"César Galindo, David Jaklitsch, C. Schweigert\",\"doi\":\"10.36045/j.bbms.210720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend categorical Morita equivalence to finite tensor categories graded by a finite group $G$. We show that two such categories are graded Morita equivalent if and only if their equivariant Drinfeld centers are equivalent as braided $G$-crossed tensor categories.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.210720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将范畴Morita等价推广到由有限群G分级的有限张量范畴。我们证明了两个这样的范畴是渐变Morita等价的当且仅当它们的等变Drinfeld中心等价于编织$G$交叉张量范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equivariant Morita theory for graded tensor categories
We extend categorical Morita equivalence to finite tensor categories graded by a finite group $G$. We show that two such categories are graded Morita equivalent if and only if their equivariant Drinfeld centers are equivalent as braided $G$-crossed tensor categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信