论蛋白质晶体学中单位晶胞参数的准确性。

IF 2.2 4区 生物学
Zbigniew Dauter, Alexander Wlodawer
{"title":"论蛋白质晶体学中单位晶胞参数的准确性。","authors":"Zbigniew Dauter, Alexander Wlodawer","doi":"10.1107/S1399004715015503","DOIUrl":null,"url":null,"abstract":"<p><p>The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen. </p>","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631477/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the accuracy of unit-cell parameters in protein crystallography.\",\"authors\":\"Zbigniew Dauter, Alexander Wlodawer\",\"doi\":\"10.1107/S1399004715015503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen. </p>\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715015503\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715015503","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质数据库(PDB)中有许多结构以空间群 P1 表示,但实际上具有更高的对称性,因此可以对大分子晶体的单位晶胞参数的准确性和精确性进行评估。此外,之前作为内部项目的一部分而收集的几种蛋白质晶体的衍射图像,也用三种流行的软件包进行了独立处理。根据已公布的序列晶体学数据对结果进行的分析表明,将 PDB 中的单胞参数精确到小数点后三位的做法并不合理,因为这些参数的误差不小于 0.2%。我们还注意到,处理包含完整晶体学对称性的数据并不会导致细化参数的恶化;因此,当可以看到更高的对称性时,将晶体视为属于 P1 空间群是没有益处的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the accuracy of unit-cell parameters in protein crystallography.

The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
13.60%
发文量
0
审稿时长
3 months
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信