基因表达中量子组蛋白修饰的研究进展

L. Luo
{"title":"基因表达中量子组蛋白修饰的研究进展","authors":"L. Luo","doi":"10.1063/1.4756456","DOIUrl":null,"url":null,"abstract":"A quantum mechanical model on histone modification is proposed. Along with the methyl / acetate or other groups bound to the modified residues the torsion angles of the nearby histone chain are supposed to participate in the quantum transition cooperatively. The transition rate W is calculated based on the non-radiative quantum transition theory in adiabatic approximation. By using W's the reaction equations can be written for histone modification and the histone modification level can be calculable from the equations, which is decided by not only the atomic group bound to the modified residue, but also the nearby histone chain. The theory can explain the mechanism for the correlation between a pair of chromatin markers observed in histone modification. The temperature dependence and the coherence-length dependence of histone modification are deduced. Several points for checking the proposed theory and the quantum nature of histone modification are suggested as follows: 1, The relationship between lnW and 1/T is same as usual protein folding. The non-Arhenius temperature dependence of the histone modification level is predicted. 2, The variation of histone modification level through point mutation of some residues on the chain is predicted since the mutation may change the coherence-length of the system. 3, Multi-site modification obeys the quantum superposition law and the comparison between multi-site transition and single modification transition gives an additional clue to the testing of the quantum nature of histone modification.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Proposal on Quantum Histone Modification in Gene Expression\",\"authors\":\"L. Luo\",\"doi\":\"10.1063/1.4756456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantum mechanical model on histone modification is proposed. Along with the methyl / acetate or other groups bound to the modified residues the torsion angles of the nearby histone chain are supposed to participate in the quantum transition cooperatively. The transition rate W is calculated based on the non-radiative quantum transition theory in adiabatic approximation. By using W's the reaction equations can be written for histone modification and the histone modification level can be calculable from the equations, which is decided by not only the atomic group bound to the modified residue, but also the nearby histone chain. The theory can explain the mechanism for the correlation between a pair of chromatin markers observed in histone modification. The temperature dependence and the coherence-length dependence of histone modification are deduced. Several points for checking the proposed theory and the quantum nature of histone modification are suggested as follows: 1, The relationship between lnW and 1/T is same as usual protein folding. The non-Arhenius temperature dependence of the histone modification level is predicted. 2, The variation of histone modification level through point mutation of some residues on the chain is predicted since the mutation may change the coherence-length of the system. 3, Multi-site modification obeys the quantum superposition law and the comparison between multi-site transition and single modification transition gives an additional clue to the testing of the quantum nature of histone modification.\",\"PeriodicalId\":8447,\"journal\":{\"name\":\"arXiv: Biomolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.4756456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4756456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了组蛋白修饰的量子力学模型。随着甲基/醋酸酯或其他基团结合到修饰残基上,附近组蛋白链的扭转角应该协同参与量子跃迁。基于非辐射量子跃迁理论,在绝热近似下计算了跃迁速率W。利用W's可以写出组蛋白修饰的反应方程,并可以计算出组蛋白修饰水平,而组蛋白修饰水平不仅取决于修饰残基所结合的原子基团,还取决于修饰残基附近的组蛋白链。该理论可以解释在组蛋白修饰中观察到的一对染色质标记之间的相关机制。推导了组蛋白修饰的温度依赖性和相干长度依赖性。为了验证这一理论和组蛋白修饰的量子性质,我们提出以下几点建议:1、lnW与1/T的关系与通常的蛋白质折叠相同。预测了组蛋白修饰水平的非阿伦尼乌斯温度依赖性。2、通过对链上某些残基的点突变,预测了组蛋白修饰水平的变化,因为突变可能改变系统的相干长度。3、多位点修饰遵循量子叠加规律,多位点转变与单位点转变的比较为检验组蛋白修饰的量子性质提供了额外的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proposal on Quantum Histone Modification in Gene Expression
A quantum mechanical model on histone modification is proposed. Along with the methyl / acetate or other groups bound to the modified residues the torsion angles of the nearby histone chain are supposed to participate in the quantum transition cooperatively. The transition rate W is calculated based on the non-radiative quantum transition theory in adiabatic approximation. By using W's the reaction equations can be written for histone modification and the histone modification level can be calculable from the equations, which is decided by not only the atomic group bound to the modified residue, but also the nearby histone chain. The theory can explain the mechanism for the correlation between a pair of chromatin markers observed in histone modification. The temperature dependence and the coherence-length dependence of histone modification are deduced. Several points for checking the proposed theory and the quantum nature of histone modification are suggested as follows: 1, The relationship between lnW and 1/T is same as usual protein folding. The non-Arhenius temperature dependence of the histone modification level is predicted. 2, The variation of histone modification level through point mutation of some residues on the chain is predicted since the mutation may change the coherence-length of the system. 3, Multi-site modification obeys the quantum superposition law and the comparison between multi-site transition and single modification transition gives an additional clue to the testing of the quantum nature of histone modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信