具有有理非单调泛函响应的Leslie-Gower型捕食-食饵模型的分岔

IF 1.6 3区 数学 Q1 MATHEMATICS
E. González‐Olivares, Adolfo Mosquera-Aguilar, Paulo C. Tintinago-Ruiz, A. Rojas‐Palma
{"title":"具有有理非单调泛函响应的Leslie-Gower型捕食-食饵模型的分岔","authors":"E. González‐Olivares, Adolfo Mosquera-Aguilar, Paulo C. Tintinago-Ruiz, A. Rojas‐Palma","doi":"10.3846/mma.2022.15528","DOIUrl":null,"url":null,"abstract":"A Leslie-Gower type predator-prey model including group defense formation is analyzed. This phenomenon, described by a non-monotonic function originates interesting dynamics; positiveness, boundedness, permanence of solutions, and existence of up to three positive equilibria are established. The solutions are highly sensitive to initial conditions since there exists a separatrix curve dividing their behavior. Two near trajectories can have far omega-limit sets. The weakness of a singularity is established showing two limit cycles can exist. Numerical simulations endorse the analytical outcomes.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"7 1","pages":"510-532"},"PeriodicalIF":1.6000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bifurcations in a Leslie-Gower Type predator-prey Model with a rational non-Monotonic Functional response\",\"authors\":\"E. González‐Olivares, Adolfo Mosquera-Aguilar, Paulo C. Tintinago-Ruiz, A. Rojas‐Palma\",\"doi\":\"10.3846/mma.2022.15528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Leslie-Gower type predator-prey model including group defense formation is analyzed. This phenomenon, described by a non-monotonic function originates interesting dynamics; positiveness, boundedness, permanence of solutions, and existence of up to three positive equilibria are established. The solutions are highly sensitive to initial conditions since there exists a separatrix curve dividing their behavior. Two near trajectories can have far omega-limit sets. The weakness of a singularity is established showing two limit cycles can exist. Numerical simulations endorse the analytical outcomes.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"7 1\",\"pages\":\"510-532\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2022.15528\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.15528","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

分析了包含群体防御形成的Leslie-Gower型捕食-被食饵模型。这种由非单调函数描述的现象产生了有趣的动力学;建立了该问题的正性、有界性、解的恒久性和存在三个正平衡点。由于存在一条分离矩阵曲线来划分解的行为,所以解对初始条件非常敏感。两个近轨迹可以有远极限集。建立了奇异性的弱点,表明可以存在两个极限环。数值模拟证实了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations in a Leslie-Gower Type predator-prey Model with a rational non-Monotonic Functional response
A Leslie-Gower type predator-prey model including group defense formation is analyzed. This phenomenon, described by a non-monotonic function originates interesting dynamics; positiveness, boundedness, permanence of solutions, and existence of up to three positive equilibria are established. The solutions are highly sensitive to initial conditions since there exists a separatrix curve dividing their behavior. Two near trajectories can have far omega-limit sets. The weakness of a singularity is established showing two limit cycles can exist. Numerical simulations endorse the analytical outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信