{"title":"类别盲人类动作识别:一种实用的识别系统","authors":"Wenbo Li, Longyin Wen, M. Chuah, Siwei Lyu","doi":"10.1109/ICCV.2015.505","DOIUrl":null,"url":null,"abstract":"Existing human action recognition systems for 3D sequences obtained from the depth camera are designed to cope with only one action category, either single-person action or two-person interaction, and are difficult to be extended to scenarios where both action categories co-exist. In this paper, we propose the category-blind human recognition method (CHARM) which can recognize a human action without making assumptions of the action category. In our CHARM approach, we represent a human action (either a single-person action or a two-person interaction) class using a co-occurrence of motion primitives. Subsequently, we classify an action instance based on matching its motion primitive co-occurrence patterns to each class representation. The matching task is formulated as maximum clique problems. We conduct extensive evaluations of CHARM using three datasets for single-person actions, two-person interactions, and their mixtures. Experimental results show that CHARM performs favorably when compared with several state-of-the-art single-person action and two-person interaction based methods without making explicit assumptions of action category.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"15 1","pages":"4444-4452"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Category-Blind Human Action Recognition: A Practical Recognition System\",\"authors\":\"Wenbo Li, Longyin Wen, M. Chuah, Siwei Lyu\",\"doi\":\"10.1109/ICCV.2015.505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing human action recognition systems for 3D sequences obtained from the depth camera are designed to cope with only one action category, either single-person action or two-person interaction, and are difficult to be extended to scenarios where both action categories co-exist. In this paper, we propose the category-blind human recognition method (CHARM) which can recognize a human action without making assumptions of the action category. In our CHARM approach, we represent a human action (either a single-person action or a two-person interaction) class using a co-occurrence of motion primitives. Subsequently, we classify an action instance based on matching its motion primitive co-occurrence patterns to each class representation. The matching task is formulated as maximum clique problems. We conduct extensive evaluations of CHARM using three datasets for single-person actions, two-person interactions, and their mixtures. Experimental results show that CHARM performs favorably when compared with several state-of-the-art single-person action and two-person interaction based methods without making explicit assumptions of action category.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"15 1\",\"pages\":\"4444-4452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Category-Blind Human Action Recognition: A Practical Recognition System
Existing human action recognition systems for 3D sequences obtained from the depth camera are designed to cope with only one action category, either single-person action or two-person interaction, and are difficult to be extended to scenarios where both action categories co-exist. In this paper, we propose the category-blind human recognition method (CHARM) which can recognize a human action without making assumptions of the action category. In our CHARM approach, we represent a human action (either a single-person action or a two-person interaction) class using a co-occurrence of motion primitives. Subsequently, we classify an action instance based on matching its motion primitive co-occurrence patterns to each class representation. The matching task is formulated as maximum clique problems. We conduct extensive evaluations of CHARM using three datasets for single-person actions, two-person interactions, and their mixtures. Experimental results show that CHARM performs favorably when compared with several state-of-the-art single-person action and two-person interaction based methods without making explicit assumptions of action category.