β-葡萄糖苷酶催化的双向动力学

Q2 Chemical Engineering
Sneha Sawant , Sachinkumar Birhade , Annamma Anil , Harry Gilbert , Arvind Lali
{"title":"β-葡萄糖苷酶催化的双向动力学","authors":"Sneha Sawant ,&nbsp;Sachinkumar Birhade ,&nbsp;Annamma Anil ,&nbsp;Harry Gilbert ,&nbsp;Arvind Lali","doi":"10.1016/j.molcatb.2016.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>Product inhibition of β-glucosidase is considered as one of the central rate limiting steps as it starts accumulation of intermediates responsible for the slowdown of the cellulose hydrolysis. Feedback inhibitions exhibited by glucose and other oligosaccharides on the cellulose hydrolyzing enzyme reduces the rate of hydrolysis bringing the entire process to standstill. However, the exact mechanism of this catalytic slowdown is still elusive. In present study, β-glucosidases were investigated for their activities under high glucose and cellobiose concentrations. β-glucosidases recognizes cellobiose a true substrate and hydrolyzes it resulting in glucose or transglycosylates it to give cellotriose. Our observation highlight that rates of reaction for cellotriose synthesis and glucose formation are mainly concentration driven and are dynamically adjusted based on cellobiose concentration in the reaction system. We therefore conclude that critical concentration of DP2: DP3 influences hydrolysis or transglycosylation and any modulation to this ratio influences the dynamics of β-glucosidases hydrolysis.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages 161-166"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.010","citationCount":"11","resultStr":"{\"title\":\"Two- way dynamics in β-glucosidase catalysis\",\"authors\":\"Sneha Sawant ,&nbsp;Sachinkumar Birhade ,&nbsp;Annamma Anil ,&nbsp;Harry Gilbert ,&nbsp;Arvind Lali\",\"doi\":\"10.1016/j.molcatb.2016.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Product inhibition of β-glucosidase is considered as one of the central rate limiting steps as it starts accumulation of intermediates responsible for the slowdown of the cellulose hydrolysis. Feedback inhibitions exhibited by glucose and other oligosaccharides on the cellulose hydrolyzing enzyme reduces the rate of hydrolysis bringing the entire process to standstill. However, the exact mechanism of this catalytic slowdown is still elusive. In present study, β-glucosidases were investigated for their activities under high glucose and cellobiose concentrations. β-glucosidases recognizes cellobiose a true substrate and hydrolyzes it resulting in glucose or transglycosylates it to give cellotriose. Our observation highlight that rates of reaction for cellotriose synthesis and glucose formation are mainly concentration driven and are dynamically adjusted based on cellobiose concentration in the reaction system. We therefore conclude that critical concentration of DP2: DP3 influences hydrolysis or transglycosylation and any modulation to this ratio influences the dynamics of β-glucosidases hydrolysis.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"133 \",\"pages\":\"Pages 161-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.010\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716301540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 11

摘要

β-葡萄糖苷酶的产物抑制被认为是中心速率限制步骤之一,因为它开始积累负责减慢纤维素水解的中间体。葡萄糖和其他低聚糖对纤维素水解酶的反馈抑制降低了水解速率,使整个过程停滞不前。然而,这种催化减速的确切机制仍然难以捉摸。本研究研究了β-葡萄糖苷酶在高葡萄糖和高纤维素二糖浓度下的活性。β-葡萄糖苷酶识别纤维素二糖——一种真正的底物,并将其水解产生葡萄糖或将其转糖基化以产生纤维素三糖。我们的观察强调了纤维素二糖合成和葡萄糖生成的反应速率主要是由浓度驱动的,并根据反应体系中的纤维素二糖浓度动态调节。因此,我们得出结论,DP2: DP3的临界浓度影响水解或转糖基化,对该比例的任何调节都会影响β-葡萄糖苷酶水解的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two- way dynamics in β-glucosidase catalysis

Two- way dynamics in β-glucosidase catalysis

Product inhibition of β-glucosidase is considered as one of the central rate limiting steps as it starts accumulation of intermediates responsible for the slowdown of the cellulose hydrolysis. Feedback inhibitions exhibited by glucose and other oligosaccharides on the cellulose hydrolyzing enzyme reduces the rate of hydrolysis bringing the entire process to standstill. However, the exact mechanism of this catalytic slowdown is still elusive. In present study, β-glucosidases were investigated for their activities under high glucose and cellobiose concentrations. β-glucosidases recognizes cellobiose a true substrate and hydrolyzes it resulting in glucose or transglycosylates it to give cellotriose. Our observation highlight that rates of reaction for cellotriose synthesis and glucose formation are mainly concentration driven and are dynamically adjusted based on cellobiose concentration in the reaction system. We therefore conclude that critical concentration of DP2: DP3 influences hydrolysis or transglycosylation and any modulation to this ratio influences the dynamics of β-glucosidases hydrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Catalysis B-enzymatic
Journal of Molecular Catalysis B-enzymatic 生物-生化与分子生物学
CiteScore
2.58
自引率
0.00%
发文量
0
审稿时长
3.4 months
期刊介绍: Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation. Papers should report novel and significant advances in one or more of the following topics; Applied and fundamental studies of enzymes used for biocatalysis; Industrial applications of enzymatic processes, e.g. in fine chemical synthesis; Chemo-, regio- and enantioselective transformations; Screening for biocatalysts; Integration of biocatalytic and chemical steps in organic syntheses; Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies; Enzyme immobilization and stabilization, particularly in non-conventional media; Bioprocess engineering aspects, e.g. membrane bioreactors; Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification; Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity; Biomimetic studies related to enzymatic transformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信