星流中的闪光:天文瞬变事件的自动分类

S. Djorgovski, A. Mahabal, C. Donalek, M. Graham, A. Drake, B. Moghaddam, M. Turmon
{"title":"星流中的闪光:天文瞬变事件的自动分类","authors":"S. Djorgovski, A. Mahabal, C. Donalek, M. Graham, A. Drake, B. Moghaddam, M. Turmon","doi":"10.1109/eScience.2012.6404437","DOIUrl":null,"url":null,"abstract":"An automated, rapid classification of transient events detected in the modern synoptic sky surveys is essential for their scientific utility and effective follow-up using scarce resources. This presents some unusual challenges: the data are sparse, heterogeneous and incomplete; evolving in time; and most of the relevant information comes not from the data stream itself, but from a variety of archival data and contextual information (spatial, temporal, and multi-wavelength). We are exploring a variety of novel techniques, mostly Bayesian, to respond to these challenges, using the ongoing CRTS sky survey as a testbed. The current surveys are already overwhelming our ability to effectively follow all of the potentially interesting events, and these challenges will grow by orders of magnitude over the next decade as the more ambitious sky surveys get under way. While we focus on an application in a specific domain (astrophysics), these challenges are more broadly relevant for event or anomaly detection and knowledge discovery in massive data streams.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"8 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Flashes in a star stream: Automated classification of astronomical transient events\",\"authors\":\"S. Djorgovski, A. Mahabal, C. Donalek, M. Graham, A. Drake, B. Moghaddam, M. Turmon\",\"doi\":\"10.1109/eScience.2012.6404437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automated, rapid classification of transient events detected in the modern synoptic sky surveys is essential for their scientific utility and effective follow-up using scarce resources. This presents some unusual challenges: the data are sparse, heterogeneous and incomplete; evolving in time; and most of the relevant information comes not from the data stream itself, but from a variety of archival data and contextual information (spatial, temporal, and multi-wavelength). We are exploring a variety of novel techniques, mostly Bayesian, to respond to these challenges, using the ongoing CRTS sky survey as a testbed. The current surveys are already overwhelming our ability to effectively follow all of the potentially interesting events, and these challenges will grow by orders of magnitude over the next decade as the more ambitious sky surveys get under way. While we focus on an application in a specific domain (astrophysics), these challenges are more broadly relevant for event or anomaly detection and knowledge discovery in massive data streams.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"8 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

对现代天气巡天中探测到的瞬变事件进行自动、快速分类,对于其科学应用和利用稀缺资源进行有效跟踪至关重要。这就提出了一些不同寻常的挑战:数据稀疏、异构且不完整;演化的:在时间上演化的;而且大多数相关信息不是来自数据流本身,而是来自各种档案数据和上下文信息(空间、时间和多波长)。我们正在探索各种新技术,主要是贝叶斯,以应对这些挑战,使用正在进行的CRTS天空调查作为测试平台。目前的调查已经压倒了我们有效跟踪所有潜在有趣事件的能力,随着更雄心勃勃的天空调查的进行,这些挑战将在未来十年中以数量级增长。当我们专注于特定领域(天体物理学)的应用程序时,这些挑战更广泛地与大规模数据流中的事件或异常检测和知识发现相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flashes in a star stream: Automated classification of astronomical transient events
An automated, rapid classification of transient events detected in the modern synoptic sky surveys is essential for their scientific utility and effective follow-up using scarce resources. This presents some unusual challenges: the data are sparse, heterogeneous and incomplete; evolving in time; and most of the relevant information comes not from the data stream itself, but from a variety of archival data and contextual information (spatial, temporal, and multi-wavelength). We are exploring a variety of novel techniques, mostly Bayesian, to respond to these challenges, using the ongoing CRTS sky survey as a testbed. The current surveys are already overwhelming our ability to effectively follow all of the potentially interesting events, and these challenges will grow by orders of magnitude over the next decade as the more ambitious sky surveys get under way. While we focus on an application in a specific domain (astrophysics), these challenges are more broadly relevant for event or anomaly detection and knowledge discovery in massive data streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信