{"title":"SBFSelector","authors":"Ritu Garg, R. K. Singh","doi":"10.4018/ijossp.311839","DOIUrl":null,"url":null,"abstract":"Tracking changes in code using revision history shared by collaborative teams during software evolution improves traceability. Existing techniques provides incomplete and inaccurate revision history due to lack in detection of renaming and shifting at file, class, and method granularities simultaneously. This research analyzes and prioritizes the metrics responsible for detecting such changes and update the revision history. This improves the traceability by tracking complete and accurate revision history that further improves the processes related to mining software repositories. It proposes SBFSelector algorithm that uses Jaccard Similarity and cosine similarity based on the prioritized metrics to identify these changes. Result shows that 73% metrics belongs to size and complexity that holds more significance over remaining categories. Random forest is best classifier for tracking changes with 0.99 true positive rate and 0.01 false positive rate. It improves traceability by increasing the Kappa statistic and true positive rate as compared to Understand tool.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SBFSelector\",\"authors\":\"Ritu Garg, R. K. Singh\",\"doi\":\"10.4018/ijossp.311839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking changes in code using revision history shared by collaborative teams during software evolution improves traceability. Existing techniques provides incomplete and inaccurate revision history due to lack in detection of renaming and shifting at file, class, and method granularities simultaneously. This research analyzes and prioritizes the metrics responsible for detecting such changes and update the revision history. This improves the traceability by tracking complete and accurate revision history that further improves the processes related to mining software repositories. It proposes SBFSelector algorithm that uses Jaccard Similarity and cosine similarity based on the prioritized metrics to identify these changes. Result shows that 73% metrics belongs to size and complexity that holds more significance over remaining categories. Random forest is best classifier for tracking changes with 0.99 true positive rate and 0.01 false positive rate. It improves traceability by increasing the Kappa statistic and true positive rate as compared to Understand tool.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.311839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.311839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Tracking changes in code using revision history shared by collaborative teams during software evolution improves traceability. Existing techniques provides incomplete and inaccurate revision history due to lack in detection of renaming and shifting at file, class, and method granularities simultaneously. This research analyzes and prioritizes the metrics responsible for detecting such changes and update the revision history. This improves the traceability by tracking complete and accurate revision history that further improves the processes related to mining software repositories. It proposes SBFSelector algorithm that uses Jaccard Similarity and cosine similarity based on the prioritized metrics to identify these changes. Result shows that 73% metrics belongs to size and complexity that holds more significance over remaining categories. Random forest is best classifier for tracking changes with 0.99 true positive rate and 0.01 false positive rate. It improves traceability by increasing the Kappa statistic and true positive rate as compared to Understand tool.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.