基于ML的温室监测WSN框架信号评估

Q3 Mathematics
Aarti Kochhar, Naresh Kumar, Utkarsh Arora
{"title":"基于ML的温室监测WSN框架信号评估","authors":"Aarti Kochhar, Naresh Kumar, Utkarsh Arora","doi":"10.2174/2210327913666221220154338","DOIUrl":null,"url":null,"abstract":"\n\nThe deployment of a Wireless Sensor Network (WSN) provides a useful aid for monitoring greenhouse-like environments. WSN helps in achieving precision agriculture i.e. more yield can be produced with precise inputs. Before the deployment of a sensor network, it is necessary to explore the communication range of nodes. Communication signals are affected by losses due to stems, fruits, twigs, leaves, infrastructure material, etc. in a greenhouse. So as part of the deployment strategy, signal assessment is required in the greenhouse.\n\n\n\nThis research work proposes a Machine Learning (ML) based signal assessment for the evaluation of WSN deployment in different structures of a tomato greenhouse. Signal strength is measured for a naturally ventilated greenhouse and a fan-pad ventilated greenhouse. Measurements for the naturally ventilated greenhouse are considered with two case scenarios i.e. with transmitter and receiver in the same lane and with transmitter and receiver in different lanes. Models are developed for measured values and evaluated in terms of correlation and error between measured and model formulated values.\n\n\n\nFor the naturally ventilated greenhouse case scenario 1, correlation increases from 91.83% to 95.42% as the degree increases from 2 to 7. Correlation for naturally ventilated greenhouse case scenario 2 rises from 72.51% at degree 2 to 90.09% at degree 10. For the fan-pad ventilated greenhouse, the model has a more complex fitting because of the spatial variability within the greenhouse. Correlation of the model increases from 79.39% to 84.06 % with an increase in degree from 2 to 11. For the naturally ventilated greenhouse, better correlation is achieved at lower degrees compared to the fan-pad ventilated greenhouse.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Signal Assessment using ML for Evaluation of WSN Framework in Greenhouse Monitoring\",\"authors\":\"Aarti Kochhar, Naresh Kumar, Utkarsh Arora\",\"doi\":\"10.2174/2210327913666221220154338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe deployment of a Wireless Sensor Network (WSN) provides a useful aid for monitoring greenhouse-like environments. WSN helps in achieving precision agriculture i.e. more yield can be produced with precise inputs. Before the deployment of a sensor network, it is necessary to explore the communication range of nodes. Communication signals are affected by losses due to stems, fruits, twigs, leaves, infrastructure material, etc. in a greenhouse. So as part of the deployment strategy, signal assessment is required in the greenhouse.\\n\\n\\n\\nThis research work proposes a Machine Learning (ML) based signal assessment for the evaluation of WSN deployment in different structures of a tomato greenhouse. Signal strength is measured for a naturally ventilated greenhouse and a fan-pad ventilated greenhouse. Measurements for the naturally ventilated greenhouse are considered with two case scenarios i.e. with transmitter and receiver in the same lane and with transmitter and receiver in different lanes. Models are developed for measured values and evaluated in terms of correlation and error between measured and model formulated values.\\n\\n\\n\\nFor the naturally ventilated greenhouse case scenario 1, correlation increases from 91.83% to 95.42% as the degree increases from 2 to 7. Correlation for naturally ventilated greenhouse case scenario 2 rises from 72.51% at degree 2 to 90.09% at degree 10. For the fan-pad ventilated greenhouse, the model has a more complex fitting because of the spatial variability within the greenhouse. Correlation of the model increases from 79.39% to 84.06 % with an increase in degree from 2 to 11. For the naturally ventilated greenhouse, better correlation is achieved at lower degrees compared to the fan-pad ventilated greenhouse.\\n\",\"PeriodicalId\":37686,\"journal\":{\"name\":\"International Journal of Sensors, Wireless Communications and Control\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sensors, Wireless Communications and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210327913666221220154338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327913666221220154338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

无线传感器网络(WSN)的部署为监测类似温室的环境提供了有用的帮助。无线传感器网络有助于实现精准农业,即通过精确的投入可以产生更多的产量。在部署传感器网络之前,有必要探索节点的通信范围。温室中的茎、果、枝、叶、基础材料等损失会影响通信信号。因此,作为部署策略的一部分,需要在温室中进行信号评估。本研究提出了一种基于机器学习(ML)的信号评估方法,用于评估WSN在番茄温室不同结构中的部署。测量自然通风温室和扇垫通风温室的信号强度。自然通风温室的测量考虑两种情况,即发射器和接收器在同一车道和发射器和接收器在不同车道。模型是根据测量值开发的,并根据测量值和模型制定值之间的相关性和误差进行评估。对于自然通风温室情景1,随着度从2增加到7,相关性从91.83%增加到95.42%。自然通风温室情景2的相关性从2度时的72.51%上升到10度时的90.09%。对于扇垫通风温室,由于温室内部的空间变异性,模型拟合更为复杂。模型的相关系数由79.39%增加到84.06%,关联度由2增加到11。对于自然通风温室,与扇垫通风温室相比,在较低的程度上实现了较好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Assessment using ML for Evaluation of WSN Framework in Greenhouse Monitoring
The deployment of a Wireless Sensor Network (WSN) provides a useful aid for monitoring greenhouse-like environments. WSN helps in achieving precision agriculture i.e. more yield can be produced with precise inputs. Before the deployment of a sensor network, it is necessary to explore the communication range of nodes. Communication signals are affected by losses due to stems, fruits, twigs, leaves, infrastructure material, etc. in a greenhouse. So as part of the deployment strategy, signal assessment is required in the greenhouse. This research work proposes a Machine Learning (ML) based signal assessment for the evaluation of WSN deployment in different structures of a tomato greenhouse. Signal strength is measured for a naturally ventilated greenhouse and a fan-pad ventilated greenhouse. Measurements for the naturally ventilated greenhouse are considered with two case scenarios i.e. with transmitter and receiver in the same lane and with transmitter and receiver in different lanes. Models are developed for measured values and evaluated in terms of correlation and error between measured and model formulated values. For the naturally ventilated greenhouse case scenario 1, correlation increases from 91.83% to 95.42% as the degree increases from 2 to 7. Correlation for naturally ventilated greenhouse case scenario 2 rises from 72.51% at degree 2 to 90.09% at degree 10. For the fan-pad ventilated greenhouse, the model has a more complex fitting because of the spatial variability within the greenhouse. Correlation of the model increases from 79.39% to 84.06 % with an increase in degree from 2 to 11. For the naturally ventilated greenhouse, better correlation is achieved at lower degrees compared to the fan-pad ventilated greenhouse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Sensors, Wireless Communications and Control
International Journal of Sensors, Wireless Communications and Control Engineering-Electrical and Electronic Engineering
CiteScore
2.20
自引率
0.00%
发文量
53
期刊介绍: International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信