作用于对合环上的乘法广义逆* ce导数

IF 0.7 Q2 MATHEMATICS
A. M. Khaled, A. Ghareeb, M. El-Sayiad
{"title":"作用于对合环上的乘法广义逆* ce导数","authors":"A. M. Khaled, A. Ghareeb, M. El-Sayiad","doi":"10.1155/2023/2102909","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> be a ring with involution having a nontrivial symmetric idempotent element <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>e</mi>\n </math>\n </jats:inline-formula>. If <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi mathvariant=\"normal\">Ω</mi>\n </math>\n </jats:inline-formula> is any appropriate multiplicative generalized reverse <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mtext> </mtext>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>CE-derivation of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> with involution <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>∗</mi>\n </math>\n </jats:inline-formula>, then under some suitable restrictions on <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>S</mi>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi mathvariant=\"normal\">Ω</mi>\n </math>\n </jats:inline-formula> is centrally-extended additive.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Generalized Reverse <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow />\\n <mi>∗</mi>\\n </msup>\\n </math>CE-Derivations Acting on Rings with Involution\",\"authors\":\"A. M. Khaled, A. Ghareeb, M. El-Sayiad\",\"doi\":\"10.1155/2023/2102909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> be a ring with involution having a nontrivial symmetric idempotent element <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>e</mi>\\n </math>\\n </jats:inline-formula>. If <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi mathvariant=\\\"normal\\\">Ω</mi>\\n </math>\\n </jats:inline-formula> is any appropriate multiplicative generalized reverse <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msup>\\n <mtext> </mtext>\\n <mi>∗</mi>\\n </msup>\\n </math>\\n </jats:inline-formula>CE-derivation of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> with involution <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>∗</mi>\\n </math>\\n </jats:inline-formula>, then under some suitable restrictions on <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi mathvariant=\\\"normal\\\">Ω</mi>\\n </math>\\n </jats:inline-formula> is centrally-extended additive.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2102909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2102909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设S是一个有非平凡对称幂等元素e的对合环。如果Ω是S的任意适当的乘性广义逆*的对合*的导数,则在适当的S约束下,Ω为中心扩展加性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative Generalized Reverse CE-Derivations Acting on Rings with Involution
Let S be a ring with involution having a nontrivial symmetric idempotent element e . If Ω is any appropriate multiplicative generalized reverse CE-derivation of S with involution , then under some suitable restrictions on S , Ω is centrally-extended additive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信