Minquan Mao, Young T. Choi, Norman M. Wereley, A. Browne, N. Johnson
{"title":"生物力学顺应性对磁流变滑动座系统控制性能的影响","authors":"Minquan Mao, Young T. Choi, Norman M. Wereley, A. Browne, N. Johnson","doi":"10.1177/1045389X231164516","DOIUrl":null,"url":null,"abstract":"We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"5 1","pages":"1983 - 1997"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of biomechanical compliance on control performance of a magnetorheological sliding seat system\",\"authors\":\"Minquan Mao, Young T. Choi, Norman M. Wereley, A. Browne, N. Johnson\",\"doi\":\"10.1177/1045389X231164516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"5 1\",\"pages\":\"1983 - 1997\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231164516\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231164516","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of biomechanical compliance on control performance of a magnetorheological sliding seat system
We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.