边界随机分数阶微分方程的阿达玛导数系统

IF 0.1 Q4 MATHEMATICS
Z. Malki, Farida Berhoun, A. Ouahab
{"title":"边界随机分数阶微分方程的阿达玛导数系统","authors":"Z. Malki, Farida Berhoun, A. Ouahab","doi":"10.2478/aupcsm-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract We study the existence of solutions for random system of fractional differential equations with boundary nonlocal initial conditions. Our approach is based on random fixed point principles of Schaefer and Perov, combined with a vector approach that uses matrices that converge to zero. We prove existence and uniqueness results for these systems. Some examples are presented to illustrate the theory.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"3 1","pages":"17 - 41"},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"System of boundary random fractional differential equations via Hadamard derivative\",\"authors\":\"Z. Malki, Farida Berhoun, A. Ouahab\",\"doi\":\"10.2478/aupcsm-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the existence of solutions for random system of fractional differential equations with boundary nonlocal initial conditions. Our approach is based on random fixed point principles of Schaefer and Perov, combined with a vector approach that uses matrices that converge to zero. We prove existence and uniqueness results for these systems. Some examples are presented to illustrate the theory.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"3 1\",\"pages\":\"17 - 41\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了一类具有边界非局部初始条件的分数阶微分方程随机系统解的存在性。我们的方法基于Schaefer和Perov的随机不动点原理,结合使用收敛于零的矩阵的矢量方法。我们证明了这些系统的存在唯一性结果。文中给出了一些例子来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System of boundary random fractional differential equations via Hadamard derivative
Abstract We study the existence of solutions for random system of fractional differential equations with boundary nonlocal initial conditions. Our approach is based on random fixed point principles of Schaefer and Perov, combined with a vector approach that uses matrices that converge to zero. We prove existence and uniqueness results for these systems. Some examples are presented to illustrate the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信