紧身服装热湿舒适性智能预测模型

Pengpeng Cheng, Jianping Wang, Xianyi Zeng, P. Bruniaux, Daoling Chen
{"title":"紧身服装热湿舒适性智能预测模型","authors":"Pengpeng Cheng, Jianping Wang, Xianyi Zeng, P. Bruniaux, Daoling Chen","doi":"10.5604/01.3001.0015.6461","DOIUrl":null,"url":null,"abstract":"In order to improve the efficiency and accuracy of predicting the thermal and moisture comfort of skin-tight clothing (also called skin-tight underwear), principal component analysis(PCA) is used to reduce the dimensions of related variables and eliminate the multicollinearity relationship among variables. Then, the optimized variables are used as the input parameters of the coupled intelligent model of the genetic algorithm (GA) and back propagation (BP) neural network, and the thermal and moisture comfort of different tights (tight tops and tight trousers) under different sports conditions is analysed. At the same time, in order to verify the superiority of the genetic algorithm and BP neural network intelligent model, the prediction results of GA-BP, PCA-BP and BP are compared with this model. The results show that principal component analysis (PCA) improves the accuracy and adaptability of the GA-BP neural network in predicting thermal and humidity comfort. The forecasting effect of the PCA-GA-BP neural network is obviously better than that of the GA-BP, PCA-BP, BP model, which can accurately predict the thermal and moisture comfort of tight-fitting sportswear. The model has better forecasting accuracy and a simpler structure.\n\n","PeriodicalId":12123,"journal":{"name":"Fibres and Textiles in Eastern Europe","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Prediction Model of the Thermal and Moisture Comfort of the Skin-Tight Garment\",\"authors\":\"Pengpeng Cheng, Jianping Wang, Xianyi Zeng, P. Bruniaux, Daoling Chen\",\"doi\":\"10.5604/01.3001.0015.6461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the efficiency and accuracy of predicting the thermal and moisture comfort of skin-tight clothing (also called skin-tight underwear), principal component analysis(PCA) is used to reduce the dimensions of related variables and eliminate the multicollinearity relationship among variables. Then, the optimized variables are used as the input parameters of the coupled intelligent model of the genetic algorithm (GA) and back propagation (BP) neural network, and the thermal and moisture comfort of different tights (tight tops and tight trousers) under different sports conditions is analysed. At the same time, in order to verify the superiority of the genetic algorithm and BP neural network intelligent model, the prediction results of GA-BP, PCA-BP and BP are compared with this model. The results show that principal component analysis (PCA) improves the accuracy and adaptability of the GA-BP neural network in predicting thermal and humidity comfort. The forecasting effect of the PCA-GA-BP neural network is obviously better than that of the GA-BP, PCA-BP, BP model, which can accurately predict the thermal and moisture comfort of tight-fitting sportswear. The model has better forecasting accuracy and a simpler structure.\\n\\n\",\"PeriodicalId\":12123,\"journal\":{\"name\":\"Fibres and Textiles in Eastern Europe\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibres and Textiles in Eastern Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.6461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibres and Textiles in Eastern Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.6461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高紧身服装(又称紧身内衣)热湿舒适性预测的效率和准确性,采用主成分分析(PCA)对相关变量进行降维,消除变量之间的多重共线性关系。然后,将优化后的变量作为遗传算法(GA)和反向传播(BP)神经网络耦合智能模型的输入参数,分析了不同运动条件下不同紧身衣(紧身上衣和紧身裤)的热湿舒适性。同时,为了验证遗传算法和BP神经网络智能模型的优越性,将GA-BP、PCA-BP和BP的预测结果与该模型进行了比较。结果表明,主成分分析(PCA)提高了GA-BP神经网络预测热湿舒适性的准确性和适应性。PCA-GA-BP神经网络预测效果明显优于GA-BP、PCA-BP、BP模型,能准确预测紧身运动服的热湿舒适性。该模型预测精度高,结构简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Prediction Model of the Thermal and Moisture Comfort of the Skin-Tight Garment
In order to improve the efficiency and accuracy of predicting the thermal and moisture comfort of skin-tight clothing (also called skin-tight underwear), principal component analysis(PCA) is used to reduce the dimensions of related variables and eliminate the multicollinearity relationship among variables. Then, the optimized variables are used as the input parameters of the coupled intelligent model of the genetic algorithm (GA) and back propagation (BP) neural network, and the thermal and moisture comfort of different tights (tight tops and tight trousers) under different sports conditions is analysed. At the same time, in order to verify the superiority of the genetic algorithm and BP neural network intelligent model, the prediction results of GA-BP, PCA-BP and BP are compared with this model. The results show that principal component analysis (PCA) improves the accuracy and adaptability of the GA-BP neural network in predicting thermal and humidity comfort. The forecasting effect of the PCA-GA-BP neural network is obviously better than that of the GA-BP, PCA-BP, BP model, which can accurately predict the thermal and moisture comfort of tight-fitting sportswear. The model has better forecasting accuracy and a simpler structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信