seiberg - witteninvariant族的粘合公式

IF 2 1区 数学
David Baraglia, Hokuto Konno
{"title":"seiberg - witteninvariant族的粘合公式","authors":"David Baraglia, Hokuto Konno","doi":"10.2140/GT.2020.24.1381","DOIUrl":null,"url":null,"abstract":"We prove a gluing formula for the families Seiberg-Witten invariants of families of $4$-manifolds obtained by fibrewise connected sum. Our formula expresses the families Seiberg-Witten invariants of such a connected sum family in terms of the ordinary Seiberg-Witten invariants of one of the summands, under certain assumptions on the families. We construct some variants of the families Seiberg-Witten invariants and prove the gluing formula also for these variants. One variant incorporates a twist of the families moduli space using the charge conjugation symmetry of the Seiberg-Witten equations. The other variant is an equivariant Seiberg-Witten invariant of smooth group actions. We consider several applications of the gluing formula including: obstructions to smooth isotopy of diffeomorpihsms, computation of the mod $2$ Seiberg-Witten invariants of spin structures, relations between mod $2$ Seiberg-Witten invariants of $4$-manifolds and obstructions to the existence of invariant metrics of positive scalar curvature for smooth group actions on $4$-manifolds.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A gluing formula for families Seiberg–Witten\\ninvariants\",\"authors\":\"David Baraglia, Hokuto Konno\",\"doi\":\"10.2140/GT.2020.24.1381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a gluing formula for the families Seiberg-Witten invariants of families of $4$-manifolds obtained by fibrewise connected sum. Our formula expresses the families Seiberg-Witten invariants of such a connected sum family in terms of the ordinary Seiberg-Witten invariants of one of the summands, under certain assumptions on the families. We construct some variants of the families Seiberg-Witten invariants and prove the gluing formula also for these variants. One variant incorporates a twist of the families moduli space using the charge conjugation symmetry of the Seiberg-Witten equations. The other variant is an equivariant Seiberg-Witten invariant of smooth group actions. We consider several applications of the gluing formula including: obstructions to smooth isotopy of diffeomorpihsms, computation of the mod $2$ Seiberg-Witten invariants of spin structures, relations between mod $2$ Seiberg-Witten invariants of $4$-manifolds and obstructions to the existence of invariant metrics of positive scalar curvature for smooth group actions on $4$-manifolds.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2020.24.1381\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1381","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们证明了由纤维连通和得到的$4$-流形族的Seiberg-Witten不变量族的粘接公式。我们的公式用其中一个和的普通Seiberg-Witten不变量表示这样一个连通和族的Seiberg-Witten不变量,在一定的族假设下。构造了Seiberg-Witten族不变量的一些变体,并证明了这些变体的粘接公式。一种变体利用Seiberg-Witten方程的电荷共轭对称结合了家族模空间的扭曲。另一种变体是光滑群作用的等变Seiberg-Witten不变量。我们考虑了胶合公式的几种应用,包括:对异同模的光滑同位素的阻碍,自旋结构的mod $2 Seiberg-Witten不变量的计算,$4$-流形的mod $2 Seiberg-Witten不变量之间的关系,以及对$4$-流形上光滑群作用的正标量曲率不变量存在性的阻碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gluing formula for families Seiberg–Witten invariants
We prove a gluing formula for the families Seiberg-Witten invariants of families of $4$-manifolds obtained by fibrewise connected sum. Our formula expresses the families Seiberg-Witten invariants of such a connected sum family in terms of the ordinary Seiberg-Witten invariants of one of the summands, under certain assumptions on the families. We construct some variants of the families Seiberg-Witten invariants and prove the gluing formula also for these variants. One variant incorporates a twist of the families moduli space using the charge conjugation symmetry of the Seiberg-Witten equations. The other variant is an equivariant Seiberg-Witten invariant of smooth group actions. We consider several applications of the gluing formula including: obstructions to smooth isotopy of diffeomorpihsms, computation of the mod $2$ Seiberg-Witten invariants of spin structures, relations between mod $2$ Seiberg-Witten invariants of $4$-manifolds and obstructions to the existence of invariant metrics of positive scalar curvature for smooth group actions on $4$-manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信