{"title":"Ce3+在Ca2Mg(BO3)2荧光粉中的紫外可见发光及其应用前景","authors":"Jing-Xiang Zhang, Yanru Lin, Huihong Lin","doi":"10.1155/2023/2393285","DOIUrl":null,"url":null,"abstract":"New phosphors Ca2Mg(BO3)2: Ce3+ were synthesized by the solid-state reaction method at a high temperature. The phase purity was characterized by powder X-ray diffraction (XRD). The ultraviolet-visible (UV-Vis) optical properties of Ce3+ have been investigated, and the lowest 5d levels, the emission, and the Stokes shifts of Ce3+ in the host lattice were identified. In addition, its concentration quenching process was also studied. The results show that Ce3+ ions enter Ca2+ sites with only one emission in a UV-Vis range and that the optimum doping concentration is x = 0.05. The excitation and emission spectra were evaluated to clearly reveal luminescence features.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"16 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ultraviolet-Visible Luminescence of Ce3+ in Ca2Mg(BO3)2 Phosphors with Potential Applications\",\"authors\":\"Jing-Xiang Zhang, Yanru Lin, Huihong Lin\",\"doi\":\"10.1155/2023/2393285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New phosphors Ca2Mg(BO3)2: Ce3+ were synthesized by the solid-state reaction method at a high temperature. The phase purity was characterized by powder X-ray diffraction (XRD). The ultraviolet-visible (UV-Vis) optical properties of Ce3+ have been investigated, and the lowest 5d levels, the emission, and the Stokes shifts of Ce3+ in the host lattice were identified. In addition, its concentration quenching process was also studied. The results show that Ce3+ ions enter Ca2+ sites with only one emission in a UV-Vis range and that the optimum doping concentration is x = 0.05. The excitation and emission spectra were evaluated to clearly reveal luminescence features.\",\"PeriodicalId\":17079,\"journal\":{\"name\":\"Journal of Spectroscopy\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2393285\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/2393285","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The Ultraviolet-Visible Luminescence of Ce3+ in Ca2Mg(BO3)2 Phosphors with Potential Applications
New phosphors Ca2Mg(BO3)2: Ce3+ were synthesized by the solid-state reaction method at a high temperature. The phase purity was characterized by powder X-ray diffraction (XRD). The ultraviolet-visible (UV-Vis) optical properties of Ce3+ have been investigated, and the lowest 5d levels, the emission, and the Stokes shifts of Ce3+ in the host lattice were identified. In addition, its concentration quenching process was also studied. The results show that Ce3+ ions enter Ca2+ sites with only one emission in a UV-Vis range and that the optimum doping concentration is x = 0.05. The excitation and emission spectra were evaluated to clearly reveal luminescence features.
期刊介绍:
Journal of Spectroscopy (formerly titled Spectroscopy: An International Journal) is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of spectroscopy.