{"title":"统计广义Nörlund-Euler可和性方法的一个Tauberian定理","authors":"N. Braha","doi":"10.2478/ausm-2019-0019","DOIUrl":null,"url":null,"abstract":"Abstract Let (pn) and (qn) be any two non-negative real sequences with Rn:=∑k=0npkqn-k≠0 (n∈) {{\\rm{R}}_{\\rm{n}}}: = \\sum\\limits_{{\\rm{k}} = 0}^{\\rm{n}} {{{\\rm{p}}_{\\rm{k}}}{{\\rm{q}}_{{\\rm{n}} - {\\rm{k}}}}} \\ne 0\\,\\,\\,\\,\\left( {{\\rm{n}} \\in {\\rm\\mathbb{N}}} \\right) With En1 {\\rm{E}}_{\\rm{n}}^1 − we will denote the Euler summability method. Let (xn) be a sequence of real or complex numbers and set Np,qnEn1:=1Rn∑k=0npkqn-k12k∑v=0k(vk)xv {\\rm{N}}_{{\\rm{p}},{\\rm{q}}}^{\\rm{n}}{\\rm{E}}_{\\rm{n}}^1: = {1 \\over {{{\\rm{R}}_{\\rm{n}}}}}\\sum\\limits_{{\\rm{k}} = 0}^{\\rm{n}} {{{\\rm{p}}_{\\rm{k}}}{{\\rm{q}}_{{\\rm{n - k}}}}{1 \\over {{2^{\\rm{k}}}}}\\sum\\limits_{{\\rm{v}} = 0}^{\\rm{k}} {\\left( {_{\\rm{v}}^{\\rm{k}}} \\right){{\\rm{x}}_{\\rm{v}}}} } for n ∈ ℕ. In this paper, we present necessary and sufficient conditions under which the existence of the st− limit of (xn) follows from that of st-Np,qnE n1 {\\rm{st - N}}_{{\\rm{p}},q}^{\\rm{n}}{\\rm{E}}_{\\rm{n}}^1 − limit of (xn). These conditions are one-sided or two-sided if (xn) is a sequence of real or complex numbers, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tauberian theorem for the statistical generalized Nörlund-Euler summability method\",\"authors\":\"N. Braha\",\"doi\":\"10.2478/ausm-2019-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let (pn) and (qn) be any two non-negative real sequences with Rn:=∑k=0npkqn-k≠0 (n∈) {{\\\\rm{R}}_{\\\\rm{n}}}: = \\\\sum\\\\limits_{{\\\\rm{k}} = 0}^{\\\\rm{n}} {{{\\\\rm{p}}_{\\\\rm{k}}}{{\\\\rm{q}}_{{\\\\rm{n}} - {\\\\rm{k}}}}} \\\\ne 0\\\\,\\\\,\\\\,\\\\,\\\\left( {{\\\\rm{n}} \\\\in {\\\\rm\\\\mathbb{N}}} \\\\right) With En1 {\\\\rm{E}}_{\\\\rm{n}}^1 − we will denote the Euler summability method. Let (xn) be a sequence of real or complex numbers and set Np,qnEn1:=1Rn∑k=0npkqn-k12k∑v=0k(vk)xv {\\\\rm{N}}_{{\\\\rm{p}},{\\\\rm{q}}}^{\\\\rm{n}}{\\\\rm{E}}_{\\\\rm{n}}^1: = {1 \\\\over {{{\\\\rm{R}}_{\\\\rm{n}}}}}\\\\sum\\\\limits_{{\\\\rm{k}} = 0}^{\\\\rm{n}} {{{\\\\rm{p}}_{\\\\rm{k}}}{{\\\\rm{q}}_{{\\\\rm{n - k}}}}{1 \\\\over {{2^{\\\\rm{k}}}}}\\\\sum\\\\limits_{{\\\\rm{v}} = 0}^{\\\\rm{k}} {\\\\left( {_{\\\\rm{v}}^{\\\\rm{k}}} \\\\right){{\\\\rm{x}}_{\\\\rm{v}}}} } for n ∈ ℕ. In this paper, we present necessary and sufficient conditions under which the existence of the st− limit of (xn) follows from that of st-Np,qnE n1 {\\\\rm{st - N}}_{{\\\\rm{p}},q}^{\\\\rm{n}}{\\\\rm{E}}_{\\\\rm{n}}^1 − limit of (xn). These conditions are one-sided or two-sided if (xn) is a sequence of real or complex numbers, respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2019-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tauberian theorem for the statistical generalized Nörlund-Euler summability method
Abstract Let (pn) and (qn) be any two non-negative real sequences with Rn:=∑k=0npkqn-k≠0 (n∈) {{\rm{R}}_{\rm{n}}}: = \sum\limits_{{\rm{k}} = 0}^{\rm{n}} {{{\rm{p}}_{\rm{k}}}{{\rm{q}}_{{\rm{n}} - {\rm{k}}}}} \ne 0\,\,\,\,\left( {{\rm{n}} \in {\rm\mathbb{N}}} \right) With En1 {\rm{E}}_{\rm{n}}^1 − we will denote the Euler summability method. Let (xn) be a sequence of real or complex numbers and set Np,qnEn1:=1Rn∑k=0npkqn-k12k∑v=0k(vk)xv {\rm{N}}_{{\rm{p}},{\rm{q}}}^{\rm{n}}{\rm{E}}_{\rm{n}}^1: = {1 \over {{{\rm{R}}_{\rm{n}}}}}\sum\limits_{{\rm{k}} = 0}^{\rm{n}} {{{\rm{p}}_{\rm{k}}}{{\rm{q}}_{{\rm{n - k}}}}{1 \over {{2^{\rm{k}}}}}\sum\limits_{{\rm{v}} = 0}^{\rm{k}} {\left( {_{\rm{v}}^{\rm{k}}} \right){{\rm{x}}_{\rm{v}}}} } for n ∈ ℕ. In this paper, we present necessary and sufficient conditions under which the existence of the st− limit of (xn) follows from that of st-Np,qnE n1 {\rm{st - N}}_{{\rm{p}},q}^{\rm{n}}{\rm{E}}_{\rm{n}}^1 − limit of (xn). These conditions are one-sided or two-sided if (xn) is a sequence of real or complex numbers, respectively.