{"title":"具有给定度分布的简单有向随机图中的渗流","authors":"Femke van Ieperen, I. Kryven","doi":"10.1017/s0269964823000128","DOIUrl":null,"url":null,"abstract":"\n We study site and bond percolation in simple directed random graphs with a given degree distribution. We derive the percolation threshold for the giant strongly connected component and the fraction of vertices in this component as a function of the percolation probability. The results are obtained for degree sequences in which the maximum degree may depend on the total number of nodes n, being asymptotically bounded by \n \n \n $n^{\\frac{1}{9}}$\n \n .","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"2 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Percolation in simple directed random graphs with a given degree distribution\",\"authors\":\"Femke van Ieperen, I. Kryven\",\"doi\":\"10.1017/s0269964823000128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study site and bond percolation in simple directed random graphs with a given degree distribution. We derive the percolation threshold for the giant strongly connected component and the fraction of vertices in this component as a function of the percolation probability. The results are obtained for degree sequences in which the maximum degree may depend on the total number of nodes n, being asymptotically bounded by \\n \\n \\n $n^{\\\\frac{1}{9}}$\\n \\n .\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964823000128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Percolation in simple directed random graphs with a given degree distribution
We study site and bond percolation in simple directed random graphs with a given degree distribution. We derive the percolation threshold for the giant strongly connected component and the fraction of vertices in this component as a function of the percolation probability. The results are obtained for degree sequences in which the maximum degree may depend on the total number of nodes n, being asymptotically bounded by
$n^{\frac{1}{9}}$
.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.