{"title":"拓扑连杆的分子机器","authors":"Keenan Breik, Austin Luchsinger, D. Soloveichik","doi":"10.4230/LIPIcs.DNA.27.7","DOIUrl":null,"url":null,"abstract":"Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical and chemical action. Engineering of similarly complex nanoscale devices from first principles remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized topological model which considers solely the graph connectivity of the linkages. We show a number of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all of which can be understood and reasoned about in the topological model. The variety of achieved behaviors supports the use of topological chemical linkages in understanding and engineering complex molecular behaviors. 2012 ACM Subject Classification Theory of computation → Models of computation; Theory of computation → Computational geometry","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"226 1","pages":"7:1-7:20"},"PeriodicalIF":4.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular Machines from Topological Linkages\",\"authors\":\"Keenan Breik, Austin Luchsinger, D. Soloveichik\",\"doi\":\"10.4230/LIPIcs.DNA.27.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical and chemical action. Engineering of similarly complex nanoscale devices from first principles remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized topological model which considers solely the graph connectivity of the linkages. We show a number of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all of which can be understood and reasoned about in the topological model. The variety of achieved behaviors supports the use of topological chemical linkages in understanding and engineering complex molecular behaviors. 2012 ACM Subject Classification Theory of computation → Models of computation; Theory of computation → Computational geometry\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"226 1\",\"pages\":\"7:1-7:20\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.DNA.27.7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DNA.27.7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical and chemical action. Engineering of similarly complex nanoscale devices from first principles remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized topological model which considers solely the graph connectivity of the linkages. We show a number of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all of which can be understood and reasoned about in the topological model. The variety of achieved behaviors supports the use of topological chemical linkages in understanding and engineering complex molecular behaviors. 2012 ACM Subject Classification Theory of computation → Models of computation; Theory of computation → Computational geometry
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.