{"title":"滞后暴露评估的线性马尔可夫模型","authors":"Alessandro Magrini","doi":"10.2478/bile-2018-0012","DOIUrl":null,"url":null,"abstract":"Summary Linear regression with temporally delayed covariates (distributed-lag linear regression) is a standard approach to lag exposure assessment, but it is limited to a single biomarker of interest and cannot provide insights on the relationships holding among the pathogen exposures, thus precluding the assessment of causal effects in a general context. In this paper, to overcome these limitations, distributed-lag linear regression is applied to Markovian structural causal models. Dynamic causal effects are defined as a function of regression coefficients at different time lags. The proposed methodology is illustrated using a simple lag exposure assessment problem.","PeriodicalId":8933,"journal":{"name":"Biometrical Letters","volume":"39 1","pages":"179 - 195"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linear Markovian models for lag exposure assessment\",\"authors\":\"Alessandro Magrini\",\"doi\":\"10.2478/bile-2018-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Linear regression with temporally delayed covariates (distributed-lag linear regression) is a standard approach to lag exposure assessment, but it is limited to a single biomarker of interest and cannot provide insights on the relationships holding among the pathogen exposures, thus precluding the assessment of causal effects in a general context. In this paper, to overcome these limitations, distributed-lag linear regression is applied to Markovian structural causal models. Dynamic causal effects are defined as a function of regression coefficients at different time lags. The proposed methodology is illustrated using a simple lag exposure assessment problem.\",\"PeriodicalId\":8933,\"journal\":{\"name\":\"Biometrical Letters\",\"volume\":\"39 1\",\"pages\":\"179 - 195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/bile-2018-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bile-2018-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear Markovian models for lag exposure assessment
Summary Linear regression with temporally delayed covariates (distributed-lag linear regression) is a standard approach to lag exposure assessment, but it is limited to a single biomarker of interest and cannot provide insights on the relationships holding among the pathogen exposures, thus precluding the assessment of causal effects in a general context. In this paper, to overcome these limitations, distributed-lag linear regression is applied to Markovian structural causal models. Dynamic causal effects are defined as a function of regression coefficients at different time lags. The proposed methodology is illustrated using a simple lag exposure assessment problem.