增量线性代数程序的综合

A. Shaikhha, Mohammed Elseidy, Stephan Mihaila, Daniel Espino, Christoph E. Koch
{"title":"增量线性代数程序的综合","authors":"A. Shaikhha, Mohammed Elseidy, Stephan Mihaila, Daniel Espino, Christoph E. Koch","doi":"10.1145/3385398","DOIUrl":null,"url":null,"abstract":"This article targets the Incremental View Maintenance (IVM) of sophisticated analytics (such as statistical models, machine learning programs, and graph algorithms) expressed as linear algebra programs. We present LAGO, a unified framework for linear algebra that automatically synthesizes efficient incremental trigger programs, thereby freeing the user from error-prone manual derivations, performance tuning, and low-level implementation details. The key technique underlying our framework is abstract interpretation, which is used to infer various properties of analytical programs. These properties give the reasoning power required for the automatic synthesis of efficient incremental triggers. We evaluate the effectiveness of our framework on a wide range of applications from regression models to graph computations.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"1 1","pages":"1 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis of Incremental Linear Algebra Programs\",\"authors\":\"A. Shaikhha, Mohammed Elseidy, Stephan Mihaila, Daniel Espino, Christoph E. Koch\",\"doi\":\"10.1145/3385398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article targets the Incremental View Maintenance (IVM) of sophisticated analytics (such as statistical models, machine learning programs, and graph algorithms) expressed as linear algebra programs. We present LAGO, a unified framework for linear algebra that automatically synthesizes efficient incremental trigger programs, thereby freeing the user from error-prone manual derivations, performance tuning, and low-level implementation details. The key technique underlying our framework is abstract interpretation, which is used to infer various properties of analytical programs. These properties give the reasoning power required for the automatic synthesis of efficient incremental triggers. We evaluate the effectiveness of our framework on a wide range of applications from regression models to graph computations.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"1 1\",\"pages\":\"1 - 44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目标是用线性代数程序表示的复杂分析(如统计模型、机器学习程序和图算法)的增量视图维护(IVM)。我们提出了LAGO,一个用于线性代数的统一框架,可以自动合成高效的增量触发程序,从而将用户从容易出错的手动推导、性能调优和低级实现细节中解放出来。我们的框架的关键技术是抽象解释,它用于推断分析程序的各种属性。这些属性提供了自动合成有效增量触发器所需的推理能力。我们评估了我们的框架在从回归模型到图计算的广泛应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Incremental Linear Algebra Programs
This article targets the Incremental View Maintenance (IVM) of sophisticated analytics (such as statistical models, machine learning programs, and graph algorithms) expressed as linear algebra programs. We present LAGO, a unified framework for linear algebra that automatically synthesizes efficient incremental trigger programs, thereby freeing the user from error-prone manual derivations, performance tuning, and low-level implementation details. The key technique underlying our framework is abstract interpretation, which is used to infer various properties of analytical programs. These properties give the reasoning power required for the automatic synthesis of efficient incremental triggers. We evaluate the effectiveness of our framework on a wide range of applications from regression models to graph computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信