试验反应器环境的EPR/PTFE剂量测定

D. Vehar, P. Griffin, T. Quirk
{"title":"试验反应器环境的EPR/PTFE剂量测定","authors":"D. Vehar, P. Griffin, T. Quirk","doi":"10.1520/JAI104051","DOIUrl":null,"url":null,"abstract":"The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursuedmore » at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":"22 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"EPR/PTFE Dosimetry for Test Reactor Environments\",\"authors\":\"D. Vehar, P. Griffin, T. Quirk\",\"doi\":\"10.1520/JAI104051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursuedmore » at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":\"22 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI104051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电子顺磁共振(EPR)光谱与丙氨酸等材料的使用已经被广泛用于测量Co-60、高能轫致辐射和电子束场等光子和电子场中的电离辐射吸收剂量[1]。事实上,EPR/丙氨酸剂量法已经成为NIST和NPL等国家标准机构的常规转移标准。1992年,桑迪亚国家实验室的辐射计量实验室(RML)实施了EPR/丙氨酸功能,用于其Co-60和脉冲功率设施的常规和校准活动。当时,它还研究了该系统在诸如桑迪亚脉冲反应堆和用于电子设备硬度测试的环形核心研究堆等反应堆的混合中子/光子环境中测量吸收剂量的有用性。RML得出的结论是,丙氨酸的中子响应在整个剂量计响应中所占的比例足够高,因此光子剂量的不确定性对于硅器件测试来说将是不可接受的。然而,它也表明,聚四氟乙烯(PTFE)等非氢材料将表现出较小的中子响应,可能在混合环境中有用。聚四氟乙烯在光子环境中的初步研究显示出相当大的前景,但当时没有进行进一步的开发。由于对吸收剂量测量的新兴趣,可以更好地定义光子和中子组分对传递到测试对象的总剂量的单个贡献,RML重新启动了EPR/PTFE剂量测定系统的开发。这项工作包括三个阶段:1)鉴定可能适合剂量学应用的聚四氟乙烯材料。据推测,早期样品中EPR签名的不一致可能是由于聚四氟乙烯制造工艺的可变性。2)纯光子环境下剂量学的表征。这对于确定样品制备的要求、操作参数和在定义良好和可预测的环境中使用的限制是必要的,然后再部署在定义不太明确的混合测试反应器环境中。3)聚四氟乙烯在混合中子/光子场中EPR响应的表征。这包括评估中子和光子对响应的贡献,确定中子通量和光子剂量范围的适用性。本文综述了EPR/PTFE剂量测定系统的研究进展,介绍了EPR/PTFE剂量测定系统在光子和混合中子/光子环境下的制备和应用。(作者)«更少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPR/PTFE Dosimetry for Test Reactor Environments
The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursuedmore » at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信