一类非线性常微分方程的系数化简

IF 0.3 Q4 MATHEMATICS
Feng Qi (祁锋)
{"title":"一类非线性常微分方程的系数化简","authors":"Feng Qi (祁锋)","doi":"10.12697/ACUTM.2018.22.24","DOIUrl":null,"url":null,"abstract":"By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simplifying coefficients in a family of nonlinear ordinary differential equations\",\"authors\":\"Feng Qi (祁锋)\",\"doi\":\"10.12697/ACUTM.2018.22.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

利用组合分析中的fa di Bruno公式、Stirling数和第二类Bell多项式的性质、二项式反演公式等方法,得到了一类非线性常微分方程中系数的一个简单、有意义、有意义的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplifying coefficients in a family of nonlinear ordinary differential equations
By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信