{"title":"一类非线性常微分方程的系数化简","authors":"Feng Qi (祁锋)","doi":"10.12697/ACUTM.2018.22.24","DOIUrl":null,"url":null,"abstract":"By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Simplifying coefficients in a family of nonlinear ordinary differential equations\",\"authors\":\"Feng Qi (祁锋)\",\"doi\":\"10.12697/ACUTM.2018.22.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
摘要
利用组合分析中的fa di Bruno公式、Stirling数和第二类Bell多项式的性质、二项式反演公式等方法,得到了一类非线性常微分方程中系数的一个简单、有意义、有意义的表达式。
Simplifying coefficients in a family of nonlinear ordinary differential equations
By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.