基于遥感影像光谱分析的蓝藻水华识别

Yi Lin, C. Pan, Yingying Chen, Ren Wenwei
{"title":"基于遥感影像光谱分析的蓝藻水华识别","authors":"Yi Lin, C. Pan, Yingying Chen, Ren Wenwei","doi":"10.3969/J.ISSN.0253-374X.2011.08.028","DOIUrl":null,"url":null,"abstract":"Based on the analysis of spectral curve and features of cyanobacteria bloom and other typical ground object,the normalized difference cyanobacteria bloom index(NDI_CB)was constructed to distinguish between cyanobacteria bloom and turbid water with the Landsat-7 ETM+ image in Lake Dianshan.In this study two other different vegetation indexes,normalized difference vegetation index(NDVI)and ratio vegetation index(RVI),together with NDI_CB,were applied to extracting the cyanobacteria bloom information from the same image via unsupervised classification method(k-means).The results show that NDI_CB is the best one for low-density cyanobacteria bloom extraction.In order to recognize the cyanobacteria bloom better,support vector machine(SVM)classification method was used to classify the image based on spectral features and NDI_CB,and to obtain the spatial distribution and the area of cyanobacteria bloom in Lake Dianshan.Through studying the laws of the cyanobacteria bloom distribution at a particular time,a sound,efficient and objective basis has been achieved for the ecological analysis of the prevention and the treatment of cyanobacteria bloom.","PeriodicalId":17444,"journal":{"name":"Journal of Tongji University","volume":"41 1","pages":"1247-1252"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recognition of Cyanobacteria Bloom Based on Spectral Analysis of Remote Sensing Imagery\",\"authors\":\"Yi Lin, C. Pan, Yingying Chen, Ren Wenwei\",\"doi\":\"10.3969/J.ISSN.0253-374X.2011.08.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the analysis of spectral curve and features of cyanobacteria bloom and other typical ground object,the normalized difference cyanobacteria bloom index(NDI_CB)was constructed to distinguish between cyanobacteria bloom and turbid water with the Landsat-7 ETM+ image in Lake Dianshan.In this study two other different vegetation indexes,normalized difference vegetation index(NDVI)and ratio vegetation index(RVI),together with NDI_CB,were applied to extracting the cyanobacteria bloom information from the same image via unsupervised classification method(k-means).The results show that NDI_CB is the best one for low-density cyanobacteria bloom extraction.In order to recognize the cyanobacteria bloom better,support vector machine(SVM)classification method was used to classify the image based on spectral features and NDI_CB,and to obtain the spatial distribution and the area of cyanobacteria bloom in Lake Dianshan.Through studying the laws of the cyanobacteria bloom distribution at a particular time,a sound,efficient and objective basis has been achieved for the ecological analysis of the prevention and the treatment of cyanobacteria bloom.\",\"PeriodicalId\":17444,\"journal\":{\"name\":\"Journal of Tongji University\",\"volume\":\"41 1\",\"pages\":\"1247-1252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tongji University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3969/J.ISSN.0253-374X.2011.08.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tongji University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3969/J.ISSN.0253-374X.2011.08.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在分析蓝藻华与其他典型地物光谱曲线及特征的基础上,利用Landsat-7 ETM+遥感影像构建归一化差异蓝藻华指数(NDI_CB),用于区分淀山湖蓝藻华与浑浊水体。本研究采用归一化植被指数(NDVI)和比值植被指数(RVI),结合NDI_CB,采用无监督分类方法(k-means)从同一幅图像中提取蓝藻华信息。结果表明,NDI_CB是低密度蓝藻华提取的最佳工艺。为了更好地识别蓝藻水华,采用支持向量机(SVM)分类方法,基于光谱特征和NDI_CB对图像进行分类,得到滇山湖蓝藻水华的空间分布和面积。通过对特定时间蓝藻华分布规律的研究,为蓝藻华防治的生态分析提供了合理、高效、客观的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Cyanobacteria Bloom Based on Spectral Analysis of Remote Sensing Imagery
Based on the analysis of spectral curve and features of cyanobacteria bloom and other typical ground object,the normalized difference cyanobacteria bloom index(NDI_CB)was constructed to distinguish between cyanobacteria bloom and turbid water with the Landsat-7 ETM+ image in Lake Dianshan.In this study two other different vegetation indexes,normalized difference vegetation index(NDVI)and ratio vegetation index(RVI),together with NDI_CB,were applied to extracting the cyanobacteria bloom information from the same image via unsupervised classification method(k-means).The results show that NDI_CB is the best one for low-density cyanobacteria bloom extraction.In order to recognize the cyanobacteria bloom better,support vector machine(SVM)classification method was used to classify the image based on spectral features and NDI_CB,and to obtain the spatial distribution and the area of cyanobacteria bloom in Lake Dianshan.Through studying the laws of the cyanobacteria bloom distribution at a particular time,a sound,efficient and objective basis has been achieved for the ecological analysis of the prevention and the treatment of cyanobacteria bloom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信