{"title":"石墨烯非均匀性弹性场的MD模拟","authors":"M. Dewapriya, R. Rajapakse","doi":"10.1109/icee44586.2018.8937915","DOIUrl":null,"url":null,"abstract":"A comprehensive molecular dynamics study is conducted to investigate the elastic field at an atomic inhomogeneity in graphene in the form of a circular hole or a circular boron-nitride inclusion. In addition, the effect on the stress field due to the interaction between an inhomogeneity and a crack is investigated. The results confirm that consideration must be given to the mechanical properties of the resulting system when atomic defects and inclusions are introduced to graphene to tailor optical and electronic properties.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MD Simulation of Elastic Field at an Inhomogeneity in Graphene\",\"authors\":\"M. Dewapriya, R. Rajapakse\",\"doi\":\"10.1109/icee44586.2018.8937915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive molecular dynamics study is conducted to investigate the elastic field at an atomic inhomogeneity in graphene in the form of a circular hole or a circular boron-nitride inclusion. In addition, the effect on the stress field due to the interaction between an inhomogeneity and a crack is investigated. The results confirm that consideration must be given to the mechanical properties of the resulting system when atomic defects and inclusions are introduced to graphene to tailor optical and electronic properties.\",\"PeriodicalId\":6590,\"journal\":{\"name\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"12 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icee44586.2018.8937915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MD Simulation of Elastic Field at an Inhomogeneity in Graphene
A comprehensive molecular dynamics study is conducted to investigate the elastic field at an atomic inhomogeneity in graphene in the form of a circular hole or a circular boron-nitride inclusion. In addition, the effect on the stress field due to the interaction between an inhomogeneity and a crack is investigated. The results confirm that consideration must be given to the mechanical properties of the resulting system when atomic defects and inclusions are introduced to graphene to tailor optical and electronic properties.