{"title":"随机常微分方程的均方lyapunov盆地构造","authors":"Florian Rupp","doi":"10.3934/jcd.2022024","DOIUrl":null,"url":null,"abstract":"We propose a straightforward basin search algorithm to determine a suitably large level set of the mean-square Lyapunov-function that corresponds to the linearization about an path-wise equilibrium solution of a random ordinary differential equation (RODE). Noise intensity plays a crucial role for how similar the behavior of solutions of RODEs is compared to the corresponding deterministic system. In this regards, the basin search algorithm also allows to numerically estimate up to which noise intensities linearized mean-square asymptotic stability remains.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of mean-square Lyapunov-basins for random ordinary differential equations\",\"authors\":\"Florian Rupp\",\"doi\":\"10.3934/jcd.2022024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a straightforward basin search algorithm to determine a suitably large level set of the mean-square Lyapunov-function that corresponds to the linearization about an path-wise equilibrium solution of a random ordinary differential equation (RODE). Noise intensity plays a crucial role for how similar the behavior of solutions of RODEs is compared to the corresponding deterministic system. In this regards, the basin search algorithm also allows to numerically estimate up to which noise intensities linearized mean-square asymptotic stability remains.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2022024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2022024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Construction of mean-square Lyapunov-basins for random ordinary differential equations
We propose a straightforward basin search algorithm to determine a suitably large level set of the mean-square Lyapunov-function that corresponds to the linearization about an path-wise equilibrium solution of a random ordinary differential equation (RODE). Noise intensity plays a crucial role for how similar the behavior of solutions of RODEs is compared to the corresponding deterministic system. In this regards, the basin search algorithm also allows to numerically estimate up to which noise intensities linearized mean-square asymptotic stability remains.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.