结合统计-生物物理模型将离子通道基因与皮层神经元类型的生理联系起来。

Yves Bernaerts, Michael Deistler, Pedro J Gonçalves, Jonas Beck, Marcel Stimberg, Federico Scala, Andreas S Tolias, Jakob Macke, Dmitry Kobak, Philipp Berens
{"title":"结合统计-生物物理模型将离子通道基因与皮层神经元类型的生理联系起来。","authors":"Yves Bernaerts, Michael Deistler, Pedro J Gonçalves, Jonas Beck, Marcel Stimberg, Federico Scala, Andreas S Tolias, Jakob Macke, Dmitry Kobak, Philipp Berens","doi":"10.1101/2023.03.02.530774","DOIUrl":null,"url":null,"abstract":"<p><p>Neural cell types have classically been characterized by their anatomy and electrophysiology. More recently, single-cell transcriptomics has enabled an increasingly fine genetically defined taxonomy of cortical cell types, but the link between the gene expression of individual cell types and their physiological and anatomical properties remains poorly understood. Here, we develop a hybrid modeling approach to bridge this gap. Our approach combines statistical and mechanistic models to predict cells' electrophysiological activity from their gene expression pattern. To this end, we fit biophysical Hodgkin-Huxley-based models for a wide variety of cortical cell types using simulation-based inference, while overcoming the challenge posed by the mismatch between the mathematical model and the data. Using multimodal Patch-seq data, we link the estimated model parameters to gene expression using an interpretable sparse linear regression model. Our approach recovers specific ion channel gene expressions as predictive of biophysical model parameters including ion channel densities, directly implicating their mechanistic role in determining neural firing.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combined statistical-biophysical modeling links ion channel genes to physiology of cortical neuron types.\",\"authors\":\"Yves Bernaerts, Michael Deistler, Pedro J Gonçalves, Jonas Beck, Marcel Stimberg, Federico Scala, Andreas S Tolias, Jakob Macke, Dmitry Kobak, Philipp Berens\",\"doi\":\"10.1101/2023.03.02.530774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural cell types have classically been characterized by their anatomy and electrophysiology. More recently, single-cell transcriptomics has enabled an increasingly fine genetically defined taxonomy of cortical cell types, but the link between the gene expression of individual cell types and their physiological and anatomical properties remains poorly understood. Here, we develop a hybrid modeling approach to bridge this gap. Our approach combines statistical and mechanistic models to predict cells' electrophysiological activity from their gene expression pattern. To this end, we fit biophysical Hodgkin-Huxley-based models for a wide variety of cortical cell types using simulation-based inference, while overcoming the challenge posed by the mismatch between the mathematical model and the data. Using multimodal Patch-seq data, we link the estimated model parameters to gene expression using an interpretable sparse linear regression model. Our approach recovers specific ion channel gene expressions as predictive of biophysical model parameters including ion channel densities, directly implicating their mechanistic role in determining neural firing.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.03.02.530774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.02.530774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经细胞类型的典型特征是它们的解剖学和电生理学。最近,单细胞转录组学使皮质细胞类型的遗传分类越来越精细,但个体细胞类型的基因表达与其生理和解剖特性之间的联系仍然知之甚少。在这里,我们开发了一种混合建模方法来弥合这一差距。我们的方法结合了统计和机制模型,从细胞的基因表达模式来预测细胞的电生理活动。为此,我们利用基于模拟的推理,拟合了多种皮层细胞类型的生物物理霍奇金-赫胥黎模型,同时克服了数学模型和数据之间不匹配所带来的挑战。使用多模态Patch-seq数据,我们使用可解释的稀疏线性回归模型将估计的模型参数与基因表达联系起来。我们的方法恢复了特定的离子通道基因表达,作为生物物理模型参数(包括离子通道密度)的预测,直接暗示了它们在决定神经放电中的机制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined statistical-biophysical modeling links ion channel genes to physiology of cortical neuron types.

Neural cell types have classically been characterized by their anatomy and electrophysiology. More recently, single-cell transcriptomics has enabled an increasingly fine genetically defined taxonomy of cortical cell types, but the link between the gene expression of individual cell types and their physiological and anatomical properties remains poorly understood. Here, we develop a hybrid modeling approach to bridge this gap. Our approach combines statistical and mechanistic models to predict cells' electrophysiological activity from their gene expression pattern. To this end, we fit biophysical Hodgkin-Huxley-based models for a wide variety of cortical cell types using simulation-based inference, while overcoming the challenge posed by the mismatch between the mathematical model and the data. Using multimodal Patch-seq data, we link the estimated model parameters to gene expression using an interpretable sparse linear regression model. Our approach recovers specific ion channel gene expressions as predictive of biophysical model parameters including ion channel densities, directly implicating their mechanistic role in determining neural firing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信