碳纳米管内质子转移反应:密度泛函理论与定量构效关系分析

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Bilal Achouri, Y. Belmiloud, M. Brahimi
{"title":"碳纳米管内质子转移反应:密度泛函理论与定量构效关系分析","authors":"Bilal Achouri, Y. Belmiloud, M. Brahimi","doi":"10.1177/1468678319864473","DOIUrl":null,"url":null,"abstract":"In this work, we focus our attention on chemical reactions confined within carbon nanotubes. As a result of the confinement within carbon nanotubes, novel physical and chemical properties are found for the confined materials. We consider the feasibility of proton transfer inside carbon nanotubes. To do that, we have chosen formamide as the simplest real model for exhibiting the tautomerization in DNA. We have used the quantitative structure–property relationship method, based on geometry optimization and quantum chemical structural descriptors, to illustrate the potential of using the confined space inside carbon nanotubes, which will provide comprehensive information about carbon nanotubes. All calculations have been carried out using density functional theory quantum calculations with the B3LYP functional. The geometries optimized by the Gaussian program were transferred to the computer software DRAGON to calculate pertinent descriptors that could be used in the quantitative structure–property relationship model.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton transfer reaction confined within carbon nanotubes: Density functional theory and quantitative structure–property relationship analysis\",\"authors\":\"Bilal Achouri, Y. Belmiloud, M. Brahimi\",\"doi\":\"10.1177/1468678319864473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focus our attention on chemical reactions confined within carbon nanotubes. As a result of the confinement within carbon nanotubes, novel physical and chemical properties are found for the confined materials. We consider the feasibility of proton transfer inside carbon nanotubes. To do that, we have chosen formamide as the simplest real model for exhibiting the tautomerization in DNA. We have used the quantitative structure–property relationship method, based on geometry optimization and quantum chemical structural descriptors, to illustrate the potential of using the confined space inside carbon nanotubes, which will provide comprehensive information about carbon nanotubes. All calculations have been carried out using density functional theory quantum calculations with the B3LYP functional. The geometries optimized by the Gaussian program were transferred to the computer software DRAGON to calculate pertinent descriptors that could be used in the quantitative structure–property relationship model.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/1468678319864473\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319864473","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将注意力集中在限制在碳纳米管内的化学反应上。由于限制在碳纳米管内,限制材料被发现了新的物理和化学性质。我们考虑了碳纳米管内部质子转移的可行性。为了做到这一点,我们选择甲酰胺作为最简单的真实模型来展示DNA中的互变异构化。我们使用基于几何优化和量子化学结构描述符的定量结构-性质关系方法来说明利用碳纳米管内部受限空间的潜力,这将提供关于碳纳米管的全面信息。所有的计算都使用密度泛函理论与B3LYP泛函进行量子计算。将高斯程序优化后的几何形状传递给计算机软件DRAGON,计算出相应的描述符,用于定量结构-性能关系模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proton transfer reaction confined within carbon nanotubes: Density functional theory and quantitative structure–property relationship analysis
In this work, we focus our attention on chemical reactions confined within carbon nanotubes. As a result of the confinement within carbon nanotubes, novel physical and chemical properties are found for the confined materials. We consider the feasibility of proton transfer inside carbon nanotubes. To do that, we have chosen formamide as the simplest real model for exhibiting the tautomerization in DNA. We have used the quantitative structure–property relationship method, based on geometry optimization and quantum chemical structural descriptors, to illustrate the potential of using the confined space inside carbon nanotubes, which will provide comprehensive information about carbon nanotubes. All calculations have been carried out using density functional theory quantum calculations with the B3LYP functional. The geometries optimized by the Gaussian program were transferred to the computer software DRAGON to calculate pertinent descriptors that could be used in the quantitative structure–property relationship model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信