若干图的总不相交不规则性强度

M. Tilukay, A. Salman
{"title":"若干图的总不相交不规则性强度","authors":"M. Tilukay, A. Salman","doi":"10.19184/IJC.2020.4.2.2","DOIUrl":null,"url":null,"abstract":"<div class=\"page\" title=\"Page 1\"><div class=\"layoutArea\"><div class=\"column\"><p><span>Under a totally irregular total </span><em>k</em><span>-labeling of a graph </span><span><em>G</em> </span><span>= (</span><span><em>V</em>,<em>E</em></span><span>), we found that for some certain graphs, the edge-weight set </span><em>W</em><span>(</span><em>E</em><span>) and the vertex-weight set </span><em>W</em><span>(</span><em>V</em><span>) of </span><span><em>G</em> </span><span>which are induced by </span><span><em>k</em> </span><span>= </span><span>ts</span><span>(</span><em>G</em><span>), </span><em>W</em><span>(</span><em>E</em><span>) </span><span>∩ </span><em>W</em><span>(</span><em>V</em><span>) is a non empty set. For which </span><span>k</span><span>, a graph </span><span>G </span><span>has a totally irregular total labeling if </span><em>W</em><span>(</span><em>E</em><span>) </span><span>∩ </span><em>W</em><span>(</span><em>V</em><span>) = </span><span>∅</span><span>? We introduce the total disjoint irregularity strength, denoted by </span><span>ds</span><span>(</span><em>G</em><span>), as the minimum value </span><span><em>k</em> </span><span>where this condition satisfied. We provide the lower bound of </span><span>ds</span><span>(</span><em>G</em><span>) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.</span></p></div></div></div>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The total disjoint irregularity strength of some certain graphs\",\"authors\":\"M. Tilukay, A. Salman\",\"doi\":\"10.19184/IJC.2020.4.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div class=\\\"page\\\" title=\\\"Page 1\\\"><div class=\\\"layoutArea\\\"><div class=\\\"column\\\"><p><span>Under a totally irregular total </span><em>k</em><span>-labeling of a graph </span><span><em>G</em> </span><span>= (</span><span><em>V</em>,<em>E</em></span><span>), we found that for some certain graphs, the edge-weight set </span><em>W</em><span>(</span><em>E</em><span>) and the vertex-weight set </span><em>W</em><span>(</span><em>V</em><span>) of </span><span><em>G</em> </span><span>which are induced by </span><span><em>k</em> </span><span>= </span><span>ts</span><span>(</span><em>G</em><span>), </span><em>W</em><span>(</span><em>E</em><span>) </span><span>∩ </span><em>W</em><span>(</span><em>V</em><span>) is a non empty set. For which </span><span>k</span><span>, a graph </span><span>G </span><span>has a totally irregular total labeling if </span><em>W</em><span>(</span><em>E</em><span>) </span><span>∩ </span><em>W</em><span>(</span><em>V</em><span>) = </span><span>∅</span><span>? We introduce the total disjoint irregularity strength, denoted by </span><span>ds</span><span>(</span><em>G</em><span>), as the minimum value </span><span><em>k</em> </span><span>where this condition satisfied. We provide the lower bound of </span><span>ds</span><span>(</span><em>G</em><span>) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.</span></p></div></div></div>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/IJC.2020.4.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/IJC.2020.4.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在图G = (V,E)的完全不规则全k标记下,我们发现对于某些图,由k = ts(G), W(E)∩W(V)导出的G的边权集W(E)和顶点权集W(V)是一个非空集。对于哪个k,如果W(E)∩W(V) =∅?我们引入总不节理不规则强度,用ds(G)表示,作为满足此条件的最小值k。我们给出了ds(G)的下界,并确定了环、路径、星形和完全图的总不相交不规则强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The total disjoint irregularity strength of some certain graphs

Under a totally irregular total k-labeling of a graph G = (V,E), we found that for some certain graphs, the edge-weight set W(E) and the vertex-weight set W(V) of G which are induced by k ts(G), W(E∩ W(V) is a non empty set. For which k, a graph has a totally irregular total labeling if W(E∩ W(V) = ? We introduce the total disjoint irregularity strength, denoted by ds(G), as the minimum value k where this condition satisfied. We provide the lower bound of ds(G) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信