风险-收益关系的半参数估计

J. Escanciano, J. Pardo-Fernández, I. Keilegom
{"title":"风险-收益关系的半参数估计","authors":"J. Escanciano, J. Pardo-Fernández, I. Keilegom","doi":"10.2139/ssrn.2320768","DOIUrl":null,"url":null,"abstract":"This article proposes semi-parametric least squares estimation of parametric risk-return relationships, i.e. parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of unobservable parametric factors. A distinctive feature of our estimator is that it does not require a parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is non-standard due to the presence of estimated factors. We provide simple sufficient conditions for the estimated factors not to have an impact in the asymptotic standard error of estimators. A simulation study investigates the nite sample performance of the estimates. Finally, an application to the CRSP value-weighted excess returns highlights the merits of our approach. In contrast to most previous studies using non-parametric estimates, we find a positive and significant price of risk in our semi-parametric setting.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-Parametric Estimation of Risk-Return Relationships\",\"authors\":\"J. Escanciano, J. Pardo-Fernández, I. Keilegom\",\"doi\":\"10.2139/ssrn.2320768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes semi-parametric least squares estimation of parametric risk-return relationships, i.e. parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of unobservable parametric factors. A distinctive feature of our estimator is that it does not require a parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is non-standard due to the presence of estimated factors. We provide simple sufficient conditions for the estimated factors not to have an impact in the asymptotic standard error of estimators. A simulation study investigates the nite sample performance of the estimates. Finally, an application to the CRSP value-weighted excess returns highlights the merits of our approach. In contrast to most previous studies using non-parametric estimates, we find a positive and significant price of risk in our semi-parametric setting.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2320768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2320768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了参数风险收益关系的半参数最小二乘估计,即给定一组不可观测参数因子,超额收益的条件均值与条件方差之间的参数约束。我们的估计器的一个显著特征是它不需要条件均值和方差的参数模型。我们建立了估计的一致性和渐近正态性。由于估计因素的存在,该理论是非标准的。我们提供了估计因子不影响估计量渐近标准误差的简单充分条件。仿真研究考察了估计的夜间样本性能。最后,对CRSP价值加权超额收益的一个应用表明了我们的方法的优点。与以往大多数使用非参数估计的研究相反,我们发现在我们的半参数设置中风险的积极和显著价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Parametric Estimation of Risk-Return Relationships
This article proposes semi-parametric least squares estimation of parametric risk-return relationships, i.e. parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of unobservable parametric factors. A distinctive feature of our estimator is that it does not require a parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is non-standard due to the presence of estimated factors. We provide simple sufficient conditions for the estimated factors not to have an impact in the asymptotic standard error of estimators. A simulation study investigates the nite sample performance of the estimates. Finally, an application to the CRSP value-weighted excess returns highlights the merits of our approach. In contrast to most previous studies using non-parametric estimates, we find a positive and significant price of risk in our semi-parametric setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信