促进文化空间中可信物联网实体的语义互操作性:智能博物馆本体

Konstantina Zachila, Konstantinos I. Kotis, Evangelos Paparidis, Stamatia Ladikou, D. Spiliotopoulos
{"title":"促进文化空间中可信物联网实体的语义互操作性:智能博物馆本体","authors":"Konstantina Zachila, Konstantinos I. Kotis, Evangelos Paparidis, Stamatia Ladikou, D. Spiliotopoulos","doi":"10.3390/iot2040037","DOIUrl":null,"url":null,"abstract":"Nowadays, cultural spaces (e.g., museums and archaeological sites) are interested in adding intelligence in their ecosystem by deploying different types of smart applications such as automated environmental monitoring, energy saving, and user experience optimization. Such an ecosystem is better realized through semantics in order to efficiently represent the required knowledge for facilitating interoperability among different application domains, integration of data, and inference of new knowledge as insights into what may have not been observed at first sight. This paper reports on our recent efforts for the engineering of a smart museum (SM) ontology that meets the following objectives: (a) represent knowledge related to trustworthy IoT entities that “live” and are deployed in a SM, i.e., things, sensors, actuators, people, data, and applications; (b) deal with the semantic interoperability and integration of heterogeneous SM applications and data; (c) represent knowledge related to museum visits and visitors toward enhancing their visiting experience; (d) represent knowledge related to smart energy saving; (e) represent knowledge related to the monitoring of environmental conditions in museums; and (f) represent knowledge related to the space and location of exhibits and collections. The paper not only contributes a novel SM ontology, but also presents the updated HCOME methodology for the agile, human-centered, collaborative and iterative engineering of living, reused, and modular ontologies.","PeriodicalId":6745,"journal":{"name":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","volume":"119 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Facilitating Semantic Interoperability of Trustworthy IoT Entities in Cultural Spaces: The Smart Museum Ontology\",\"authors\":\"Konstantina Zachila, Konstantinos I. Kotis, Evangelos Paparidis, Stamatia Ladikou, D. Spiliotopoulos\",\"doi\":\"10.3390/iot2040037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, cultural spaces (e.g., museums and archaeological sites) are interested in adding intelligence in their ecosystem by deploying different types of smart applications such as automated environmental monitoring, energy saving, and user experience optimization. Such an ecosystem is better realized through semantics in order to efficiently represent the required knowledge for facilitating interoperability among different application domains, integration of data, and inference of new knowledge as insights into what may have not been observed at first sight. This paper reports on our recent efforts for the engineering of a smart museum (SM) ontology that meets the following objectives: (a) represent knowledge related to trustworthy IoT entities that “live” and are deployed in a SM, i.e., things, sensors, actuators, people, data, and applications; (b) deal with the semantic interoperability and integration of heterogeneous SM applications and data; (c) represent knowledge related to museum visits and visitors toward enhancing their visiting experience; (d) represent knowledge related to smart energy saving; (e) represent knowledge related to the monitoring of environmental conditions in museums; and (f) represent knowledge related to the space and location of exhibits and collections. The paper not only contributes a novel SM ontology, but also presents the updated HCOME methodology for the agile, human-centered, collaborative and iterative engineering of living, reused, and modular ontologies.\",\"PeriodicalId\":6745,\"journal\":{\"name\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"volume\":\"119 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iot2040037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iot2040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,文化空间(如博物馆和考古遗址)对通过部署不同类型的智能应用程序(如自动环境监测、节能和用户体验优化)在其生态系统中添加智能感兴趣。这样的生态系统可以通过语义更好地实现,以便有效地表示所需的知识,以促进不同应用程序领域之间的互操作性、数据集成和新知识的推断,作为对第一眼可能没有观察到的内容的见解。本文报告了我们最近为智能博物馆(SM)本体工程所做的努力,该本体满足以下目标:(a)表示与可信赖的物联网实体相关的知识,这些实体“存在”并部署在SM中,即事物、传感器、执行器、人员、数据和应用程序;(b)处理异构SM应用程序和数据的语义互操作性和集成;(c)表达与博物馆参观及参观者有关的知识,以提升他们的参观体验;(d)表示智能节能相关知识;(e)代表与监测博物馆环境状况有关的知识;(f)表示与展品和藏品的空间和位置有关的知识。本文不仅提出了一种新的SM本体,而且还提出了更新的HCOME方法,用于敏捷、以人为中心、协作和迭代的活的、可重用的和模块化本体工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facilitating Semantic Interoperability of Trustworthy IoT Entities in Cultural Spaces: The Smart Museum Ontology
Nowadays, cultural spaces (e.g., museums and archaeological sites) are interested in adding intelligence in their ecosystem by deploying different types of smart applications such as automated environmental monitoring, energy saving, and user experience optimization. Such an ecosystem is better realized through semantics in order to efficiently represent the required knowledge for facilitating interoperability among different application domains, integration of data, and inference of new knowledge as insights into what may have not been observed at first sight. This paper reports on our recent efforts for the engineering of a smart museum (SM) ontology that meets the following objectives: (a) represent knowledge related to trustworthy IoT entities that “live” and are deployed in a SM, i.e., things, sensors, actuators, people, data, and applications; (b) deal with the semantic interoperability and integration of heterogeneous SM applications and data; (c) represent knowledge related to museum visits and visitors toward enhancing their visiting experience; (d) represent knowledge related to smart energy saving; (e) represent knowledge related to the monitoring of environmental conditions in museums; and (f) represent knowledge related to the space and location of exhibits and collections. The paper not only contributes a novel SM ontology, but also presents the updated HCOME methodology for the agile, human-centered, collaborative and iterative engineering of living, reused, and modular ontologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信