{"title":"基于两方程绞合关系的一个结不变量","authors":"Liu Weili, Huimin Lu","doi":"10.11648/J.ACM.20211005.12","DOIUrl":null,"url":null,"abstract":"Knot theory is a branch of the geometric topology, the core question of knot theory is to explore the equivalence classification of knots; In other words, for a knot, how to determine whether the knot is an unknot; giving two knots, how to determine whether the two knots are equivalent. To prove that two knots are equivalent, it is necessary to turn one knot into another through the same mark transformation, but to show that two knots are unequal, the problem is not as simple as people think. We cannot say that they are unequal because we can't see the deformation between them. For the equivalence classification problem of knots, we mainly find equivalent invariants between knots. Currently, scholars have also defined multiple knot invariants, but they also have certain limitations, and even more difficult to understand. In this paper, based on existing theoretical results, we define a knot invariant through the skein relation with two equations. To prove this knot invariant, we define a function f(L), and to prove f(L) to be a homology invariant of a non-directed link, we need to show that it remains constant under the Reideminster moves. This article first defines the fk(L), the property of f(L) is obtained by using the properties of fk(L). In the process of proof, the induction method has been used many times. The proof process is somewhat complicated, but it is easier to understand. And the common knot invariant is defined by one equation, which defining the knot invariant with two equations in this paper.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":"68 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Knot Invariant Defined Based on the Skein Relation with Two Equations\",\"authors\":\"Liu Weili, Huimin Lu\",\"doi\":\"10.11648/J.ACM.20211005.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knot theory is a branch of the geometric topology, the core question of knot theory is to explore the equivalence classification of knots; In other words, for a knot, how to determine whether the knot is an unknot; giving two knots, how to determine whether the two knots are equivalent. To prove that two knots are equivalent, it is necessary to turn one knot into another through the same mark transformation, but to show that two knots are unequal, the problem is not as simple as people think. We cannot say that they are unequal because we can't see the deformation between them. For the equivalence classification problem of knots, we mainly find equivalent invariants between knots. Currently, scholars have also defined multiple knot invariants, but they also have certain limitations, and even more difficult to understand. In this paper, based on existing theoretical results, we define a knot invariant through the skein relation with two equations. To prove this knot invariant, we define a function f(L), and to prove f(L) to be a homology invariant of a non-directed link, we need to show that it remains constant under the Reideminster moves. This article first defines the fk(L), the property of f(L) is obtained by using the properties of fk(L). In the process of proof, the induction method has been used many times. The proof process is somewhat complicated, but it is easier to understand. And the common knot invariant is defined by one equation, which defining the knot invariant with two equations in this paper.\",\"PeriodicalId\":55503,\"journal\":{\"name\":\"Applied and Computational Mathematics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11648/J.ACM.20211005.12\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/J.ACM.20211005.12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Knot Invariant Defined Based on the Skein Relation with Two Equations
Knot theory is a branch of the geometric topology, the core question of knot theory is to explore the equivalence classification of knots; In other words, for a knot, how to determine whether the knot is an unknot; giving two knots, how to determine whether the two knots are equivalent. To prove that two knots are equivalent, it is necessary to turn one knot into another through the same mark transformation, but to show that two knots are unequal, the problem is not as simple as people think. We cannot say that they are unequal because we can't see the deformation between them. For the equivalence classification problem of knots, we mainly find equivalent invariants between knots. Currently, scholars have also defined multiple knot invariants, but they also have certain limitations, and even more difficult to understand. In this paper, based on existing theoretical results, we define a knot invariant through the skein relation with two equations. To prove this knot invariant, we define a function f(L), and to prove f(L) to be a homology invariant of a non-directed link, we need to show that it remains constant under the Reideminster moves. This article first defines the fk(L), the property of f(L) is obtained by using the properties of fk(L). In the process of proof, the induction method has been used many times. The proof process is somewhat complicated, but it is easier to understand. And the common knot invariant is defined by one equation, which defining the knot invariant with two equations in this paper.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.