{"title":"乙烯基聚合物高分辨率液态13碳核磁共振表征研究进展","authors":"J. C. Randall","doi":"10.1080/07366578908055172","DOIUrl":null,"url":null,"abstract":"Abstract The use of 13 carbon nuclear magnetic resonance (NMR) spectroscopy in the molecular characterization of macromolecules has advanced our knowledge into structural areas that have been nearly impossible to measure by other spectroscopic techniques. Innovative applications have led to determinations of polymer configurational distributions, comonomer sequence distributions, average sequence lengths, structure and distribution of short chain branches, and analyses of nonreactive end groups. As a result, the importance of 13C NMR to the field of polymer science cannot be overemphasized. The key to the success of 13C-NMR studies in defining polymer molecular structure has been a structural sensitivity which encompasses more than just a few functional groups or carbon atoms. A sensitivity to polymer repeat unit sequences of lengths from two to as many as five, seven, and even nine contiguous repeat units [1,2] has been observed. Of course, any structural technique that senses a unique response from as f...","PeriodicalId":16139,"journal":{"name":"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics","volume":"23 1","pages":"201-317"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"382","resultStr":"{\"title\":\"A REVIEW OF HIGH RESOLUTION LIQUID 13CARBON NUCLEAR MAGNETIC RESONANCE CHARACTERIZATIONS OF ETHYLENE-BASED POLYMERS\",\"authors\":\"J. C. Randall\",\"doi\":\"10.1080/07366578908055172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The use of 13 carbon nuclear magnetic resonance (NMR) spectroscopy in the molecular characterization of macromolecules has advanced our knowledge into structural areas that have been nearly impossible to measure by other spectroscopic techniques. Innovative applications have led to determinations of polymer configurational distributions, comonomer sequence distributions, average sequence lengths, structure and distribution of short chain branches, and analyses of nonreactive end groups. As a result, the importance of 13C NMR to the field of polymer science cannot be overemphasized. The key to the success of 13C-NMR studies in defining polymer molecular structure has been a structural sensitivity which encompasses more than just a few functional groups or carbon atoms. A sensitivity to polymer repeat unit sequences of lengths from two to as many as five, seven, and even nine contiguous repeat units [1,2] has been observed. Of course, any structural technique that senses a unique response from as f...\",\"PeriodicalId\":16139,\"journal\":{\"name\":\"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics\",\"volume\":\"23 1\",\"pages\":\"201-317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"382\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07366578908055172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science-reviews in Macromolecular Chemistry and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07366578908055172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A REVIEW OF HIGH RESOLUTION LIQUID 13CARBON NUCLEAR MAGNETIC RESONANCE CHARACTERIZATIONS OF ETHYLENE-BASED POLYMERS
Abstract The use of 13 carbon nuclear magnetic resonance (NMR) spectroscopy in the molecular characterization of macromolecules has advanced our knowledge into structural areas that have been nearly impossible to measure by other spectroscopic techniques. Innovative applications have led to determinations of polymer configurational distributions, comonomer sequence distributions, average sequence lengths, structure and distribution of short chain branches, and analyses of nonreactive end groups. As a result, the importance of 13C NMR to the field of polymer science cannot be overemphasized. The key to the success of 13C-NMR studies in defining polymer molecular structure has been a structural sensitivity which encompasses more than just a few functional groups or carbon atoms. A sensitivity to polymer repeat unit sequences of lengths from two to as many as five, seven, and even nine contiguous repeat units [1,2] has been observed. Of course, any structural technique that senses a unique response from as f...