在不知道算子范数的前提下求Hilbert空间中单调算子和的分裂零点解

Montira Suwannaprapa, N. Petrot
{"title":"在不知道算子范数的前提下求Hilbert空间中单调算子和的分裂零点解","authors":"Montira Suwannaprapa, N. Petrot","doi":"10.22436/jnsa.011.05.09","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the split monotone variational inclusion problem in Hilbert spaces. By assuming the existence of solutions, we introduce an iterative algorithm, in which the stepsizes does not need any prior information about the operator norm, and show its convergence theorem. Some applications and numerical experiments of the considered problem are also discussed.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"11 1","pages":"683-700"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces\",\"authors\":\"Montira Suwannaprapa, N. Petrot\",\"doi\":\"10.22436/jnsa.011.05.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the split monotone variational inclusion problem in Hilbert spaces. By assuming the existence of solutions, we introduce an iterative algorithm, in which the stepsizes does not need any prior information about the operator norm, and show its convergence theorem. Some applications and numerical experiments of the considered problem are also discussed.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"11 1\",\"pages\":\"683-700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.011.05.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.011.05.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究Hilbert空间中的分裂单调变分包含问题。在假设解存在的前提下,引入了一种步长不需要算子范数先验信息的迭代算法,并给出了该算法的收敛定理。讨论了所考虑问题的一些应用和数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces
In this paper, we consider the split monotone variational inclusion problem in Hilbert spaces. By assuming the existence of solutions, we introduce an iterative algorithm, in which the stepsizes does not need any prior information about the operator norm, and show its convergence theorem. Some applications and numerical experiments of the considered problem are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信