超声处理白蛋白微泡后小鼠经皮α-熊果苷的传递效率

A. Liao, Wan-Chun Ma, H. Chuang, C. Yeh, Chih-Chung Huang
{"title":"超声处理白蛋白微泡后小鼠经皮α-熊果苷的传递效率","authors":"A. Liao, Wan-Chun Ma, H. Chuang, C. Yeh, Chih-Chung Huang","doi":"10.1109/NEMS.2014.6908782","DOIUrl":null,"url":null,"abstract":"The application of transdermal delivery to a wider range of drugs is limited due to the significant barrier to penetration across the skin which is associated with the stratum corneum layer of the epidermis. In previous study in the literature, the feasibility and effects of the ultrasound (US) contrast agent, microbubbles (MBs) as the penetration enhancers for transdermal delivery in vivo were firstly demonstrated. In this study, the penetration depth, concentration, and efficiency of transdermal α-Arbutin delivery after MBs treatment with US in mice were demonstrated for 4 weeks. The penetration of α-arbutin on skin was enhanced by using ultrasound energy and MBs either for in vitro or for in vivo experiments. Experiment parameters were randomly divided into four groups (n=5 animals per group): (1) only penetrating α-Arbutin (C); (2) US combines with penetrating α-arbutin (U) (3) US combines with MBs contrast agent and penetrating α-arbutin (UB); (4) US combines with diluted MBs and penetrating α-arbutin (UBD). According to the results, the penetration depth of agarose phantom and pigskin of UBD group increase 47% and 84%, respectively. The in vitro skin permeation of 2% α-arbutin, UBD group was 83% greater than control group after 3 hour of permeation study. For in vivo study, the whitening effect (luminosity index) of mice skin in UBD group significantly increase 25% in one week, 34% in two weeks and tends towards stability in three weeks (37%) in C57BL/6J mice over a 4-week experimental period. Our results investigated that the treatments of ultrasound and MBs can increase skin permeability, enhance α-arbutin delivery to inhibit melanogenesis and not damage the skin in mice.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"9 1","pages":"163-167"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The efficiency of transdermal α-Arbutin delivery after albumin microbubbles treatment with ultrasound in mice\",\"authors\":\"A. Liao, Wan-Chun Ma, H. Chuang, C. Yeh, Chih-Chung Huang\",\"doi\":\"10.1109/NEMS.2014.6908782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of transdermal delivery to a wider range of drugs is limited due to the significant barrier to penetration across the skin which is associated with the stratum corneum layer of the epidermis. In previous study in the literature, the feasibility and effects of the ultrasound (US) contrast agent, microbubbles (MBs) as the penetration enhancers for transdermal delivery in vivo were firstly demonstrated. In this study, the penetration depth, concentration, and efficiency of transdermal α-Arbutin delivery after MBs treatment with US in mice were demonstrated for 4 weeks. The penetration of α-arbutin on skin was enhanced by using ultrasound energy and MBs either for in vitro or for in vivo experiments. Experiment parameters were randomly divided into four groups (n=5 animals per group): (1) only penetrating α-Arbutin (C); (2) US combines with penetrating α-arbutin (U) (3) US combines with MBs contrast agent and penetrating α-arbutin (UB); (4) US combines with diluted MBs and penetrating α-arbutin (UBD). According to the results, the penetration depth of agarose phantom and pigskin of UBD group increase 47% and 84%, respectively. The in vitro skin permeation of 2% α-arbutin, UBD group was 83% greater than control group after 3 hour of permeation study. For in vivo study, the whitening effect (luminosity index) of mice skin in UBD group significantly increase 25% in one week, 34% in two weeks and tends towards stability in three weeks (37%) in C57BL/6J mice over a 4-week experimental period. Our results investigated that the treatments of ultrasound and MBs can increase skin permeability, enhance α-arbutin delivery to inhibit melanogenesis and not damage the skin in mice.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"9 1\",\"pages\":\"163-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于与表皮角质层有关的穿透皮肤的重大障碍,经皮给药在更大范围内的应用受到限制。在以往的文献研究中,首次论证了超声造影剂(US)、微泡(mb)作为促渗剂在体内经皮给药的可行性和效果。在本研究中,我们用US对小鼠MBs经皮递送α-熊果苷的渗透深度、浓度和效率进行了为期4周的观察。体外和体内实验均通过超声能和mb增强α-熊果苷在皮肤上的渗透。实验参数随机分为4组(每组n=5只):(1)只穿透α-熊果苷(C);(2) US与穿透性α-熊果苷(U)联用(3)US与MBs造影剂与穿透性α-熊果苷(UB)联用;(4) US与稀释的mb和穿透性α-熊果苷(UBD)结合。结果表明,UBD组琼脂糖幻膜和猪皮的穿透深度分别增加了47%和84%。2% α-熊果苷UBD组体外皮肤透性3 h后比对照组提高83%。在体内研究中,在4周的实验期内,UBD组小鼠皮肤的美白效果(亮度指数)在一周内显著提高25%,在两周内显著提高34%,在三周内趋于稳定(37%)。我们的研究结果表明,超声和MBs处理可增加小鼠皮肤通透性,增加α-熊果苷的递送,抑制黑色素生成,且不损伤皮肤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The efficiency of transdermal α-Arbutin delivery after albumin microbubbles treatment with ultrasound in mice
The application of transdermal delivery to a wider range of drugs is limited due to the significant barrier to penetration across the skin which is associated with the stratum corneum layer of the epidermis. In previous study in the literature, the feasibility and effects of the ultrasound (US) contrast agent, microbubbles (MBs) as the penetration enhancers for transdermal delivery in vivo were firstly demonstrated. In this study, the penetration depth, concentration, and efficiency of transdermal α-Arbutin delivery after MBs treatment with US in mice were demonstrated for 4 weeks. The penetration of α-arbutin on skin was enhanced by using ultrasound energy and MBs either for in vitro or for in vivo experiments. Experiment parameters were randomly divided into four groups (n=5 animals per group): (1) only penetrating α-Arbutin (C); (2) US combines with penetrating α-arbutin (U) (3) US combines with MBs contrast agent and penetrating α-arbutin (UB); (4) US combines with diluted MBs and penetrating α-arbutin (UBD). According to the results, the penetration depth of agarose phantom and pigskin of UBD group increase 47% and 84%, respectively. The in vitro skin permeation of 2% α-arbutin, UBD group was 83% greater than control group after 3 hour of permeation study. For in vivo study, the whitening effect (luminosity index) of mice skin in UBD group significantly increase 25% in one week, 34% in two weeks and tends towards stability in three weeks (37%) in C57BL/6J mice over a 4-week experimental period. Our results investigated that the treatments of ultrasound and MBs can increase skin permeability, enhance α-arbutin delivery to inhibit melanogenesis and not damage the skin in mice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信